People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amezcua-Correa, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2008Loss measurements of microstructured optical fibres with metal-nanoparticle inclusionscitations
- 2007Integrated optoelectronics in an optical fiber
- 2007Deposition of electronic and plasmonic materials inside microstructured optical fibres
- 2007Highly efficient SERS inside microstructured optical fibres via optical mode engineering
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substrates
- 2005Microstructured optical fibres semiconductor metamaterials
- 2005Microstructured optical fibre semiconductor metamaterials
- 2005Fabrication of extreme aspect ratio wires within photonic crystal fibers
Places of action
Organizations | Location | People |
---|
document
Highly efficient SERS inside microstructured optical fibres via optical mode engineering
Abstract
Microstructured optical fibres (MOFs) offer versatile engineering of the internal microstructure geometry to provide large surface areas and aspect ratios with outstanding mechanical properties which, when functionalised with metal nanoparticles, serve as exceptional substrates for surface enhanced Raman spectroscopy (SERS) due to the large electromagnetic fields generated in the vicinity of the metal surface [1]. We have recently reported the deposition of silver nanoparticles into the voids of MOFs using a high-pressure chemical deposition. Via careful choice of the deposition parameters, the particles can be deposited in a range of capillary sizes with their growth being controlled from tens to hundreds of nanometres to tailor the plasmonic properties of the substrate. The resulting metal-dielectric MOFs offer significant benefits over conventional planar detection geometries with the long interaction lengths of the guided modes exciting multiple plasmonic resonances along the fibre.