People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gill, H. S.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Experiments and numerical modelling of secondary flows of blood and shear-thinning blood analogue fluids in rotating domainscitations
- 2024Auxetic fixation devices can achieve superior pullout performances compared to standard fixation conceptscitations
- 2021Properties of PMMA end cap holders affect FE stiffness predictions of vertebral specimens
- 20213D Printed Medical Grade Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength, Bending, Fatigue and Biocompatibility
- 2019Evaluating strength of 3D printed screw threads for patient-specific osteosynthesis plates
- 2019Evaluation of optimised cervical spine viscoelastic elements for sport injury analysis
- 2018The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates – an experimental and finite element study.citations
- 2017Validated cemented socket model for optimising acetabular fixation
- 2017Effect of absorbed fatty acids on physical properties of ultra-high molecular weight polyethylene
- 2017Use of contrast agents on polymeric materials
- 2016A Python Package to Assign Material Properties of Bone to Finite Element Models from within Abaqus Software
- 2016An open source software tool to assign the material properties of bone for ABAQUS finite element simulationscitations
- 2016A validated specimen specific finite element model of vertebral body failure
- 2016Variations in Cortical Thickness of Composite Femur Test Specimens
- 2015Tibial Fracture after Unicompartmental Knee Replacement: The Importance of Surgical Cut Accuracy
- 2014Classification of retinal ganglion cells in the southern hemisphere lamprey Geotria australis (Cyclostomata)citations
- 2014Effect of Q-switched laser surface texturing of titanium on osteoblast cell response
- 2013Fracture of mobile unicompartmental knee bearingscitations
Places of action
Organizations | Location | People |
---|
document
A validated specimen specific finite element model of vertebral body failure
Abstract
Numerical models are widely used to evaluate the mechanical behaviour of vertebral bodies (VB)subject to different loading conditions. The validity of the vast majority of these is confined to the elastic region, and here good agreement with experimental data has been demonstrated. However this approach is poorly predictive of plastic failure. Thepresent study aims to address this limitation and simulate the onset of yield. Six porcine VBs (from C2 to C7) were dissectedfrom a spine specimen, potted in PMMA bone cement and Micro-CT imaged using a Nikon XT225 ST scanner (Nikon Metrology UK, Hertfordshire, UK). A compressive load was applied to each specimen with an Instron 5967, 30 kN materials testing machine (Instron, High Wycombe, UK) at a rate of 1000 N/min. Specimen-specific FE models of all specimens were created by segmenting and meshing the micro-CT images (ScanIP, Simpleware, UK), material properties were assigned from the grayscale value and the compression experiment was repeated in-silico. Conversion factors for the Young’s modulus (kE), the Yield stress (ky), the Tangent (ktan) and the density (kρ) were determined for the grayscale values to minimise the error between experimental and numerical load-displacement behaviour. This allowed an excellent match between experiment and simulation results. The difference between experimental and numeric results for vertical displacement was typically 1% at 2000 N, between 1.5 and 3 % for 4000 N and between 2 and 3% for 5000 N, the latter typically representing the onset of yield.In this study, a technique allowing the prediction of the load-displacement behaviour of VBs subject to compression was developed. The novelty in the proposed approach rests with the fact that the onset of yield, crucial in determining subsequent failure modes, can also be modelled. This paves the way for more accurate FEA models aimed at predicting the failure modes of the spine.