People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ojala, Niko
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2021Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2020Adaptation of Laboratory tests for the assessment of wear resistance of drill-bit inserts for rotarypercussive drilling of hard rockscitations
- 2019Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2019Comparison of various high-stress wear conditions and wear performance of martensitic steelscitations
- 2018Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2018The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacingscitations
- 2018High Speed Slurry-Pot Erosion Wear Testing of HVOF and HVAF Sprayed Hardmetal Coatings
- 2018Slurry and dry particle erosion wear properties of WC-10Co4Cr and Cr3C2-25NiCr hardmetal coatings deposited by HVOF and HVAF spray processes
- 2018Erosive-abrasive wear behavior of carbide-free bainitic and boron steels compared in simulated field conditionscitations
- 2018Comparison of impact-abrasive wear characteristics and performance of direct quenched (DQ) and direct quenched and partitioned (DQ&P) steelscitations
- 2017Effect of finish rolling and quench stop temperatures on impact-abrasive wear resistance of 0.35 % carbon direct-quenched steel
- 2017Comparison of laboratory wear test results with the in-service performance of cutting edges of loader bucketscitations
- 2017Cavitation erosion, slurry erosion and solid particle erosion performance of metal matrix composite (MMC) coatings sprayed with modern high velocity thermal spray processes
- 2017Application Oriented Wear Testing of Wear Resistant Steels in Mining Industry
- 2016Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2016Application oriented wear testing of wear resistant steels in mining industry
- 2016Comparison of laboratory wear test results with the in-service performance of cutting edges of loader buckets
- 2016Wear performance of quenched wear resistant steels in abrasive slurry erosioncitations
- 2016Erosive and abrasive wear performance of carbide free bainitic steels – comparison of field and laboratory experimentscitations
- 2016The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacingscitations
- 2016The effects of microstructure on erosive-abrasive wear behavior of carbide free bainitic and boron steels
- 2016Processing and Wear Testing of Novel High-Hardness Wear-Resistant Steel
- 2014Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steelscitations
- 2014Versatile erosion wear testing with the high speed slurry-pot
Places of action
Organizations | Location | People |
---|
conferencepaper
The effects of microstructure on erosive-abrasive wear behavior of carbide free bainitic and boron steels
Abstract
The wear resistance of carbide free bainitic (CFB) microstructures have shown to be excellent in sliding, sliding-rolling and erosive-abrasive wear. Whereas, boron steels are often an economically favorable alternative used in applications subjected to erosive and abrasive wear. In this study the erosive-abrasive wear resistance of CFB and boron steels with different heat treatments were compared and the effect of microstructure on wear was investigated. An application oriented dry-pot laboratory test method with 8-10 mm granite gravel was used to produce erosive-abrasive wear environment. The tested materials were CFB and boron steels. The CFB steels had hardness values of 500 and 600 HV. The boron steels, both quenched and quenched and tempered, had a hardness of 500 HV. The influence of the microstructures on wear was studied by wear test results as well as by optical and scanning electron microscopy. The phase compositions were determined by XRD. The effect of wear, in addition to weight loss was also characterized by surface profilometry, hardness and hardness profile determinations. The wear resistance of the steels was compared with results achieved in a field test in an industrial mining application. Moreover, the effect of the different microstructures on wear behavior is discussed. The carbide free bainitic steels showed better wear performance than the martensitic boron steels. The boron steels were subjected to microcutting and microploughing, whereas the CFB steels exhibited more shallow impact craters with thin platelets.