People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dhokia, Vimal
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023A Feasibility Study for Additively Manufactured Composite Tooling
- 2023The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacturecitations
- 2023Additively manufactured cure tools for composites manufacturecitations
- 2023Characterisation of residual stresses and oxides in titanium, nickel, and aluminium alloy additive manufacturing powders via synchrotron X-ray diffractioncitations
- 2022A FEASIBILITY STUDY OF ADDITIVELY MANUFACTURED COMPOSITE TOOLING
- 2021Effects of in-process LN2 cooling on the microstructure and mechanical properties of Type 316L stainless steel produced by wire arc directed energy depositioncitations
- 2019Characterisation of austenitic 316LSi stainless steel produced by wire arc additive manufacturing with interlayer cooling
- 2018Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturingcitations
- 2018Edge trimming of carbon fibre reinforced plasticcitations
- 2016Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloycitations
- 2016Cryogenic High Speed Machining of Cobalt Chromium Alloycitations
- 2016Hybrid additive and subtractive machine tools - research and industrial developmentscitations
- 2016Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloycitations
- 2015Experimental Framework for Testing the Finishing of Additive Parts
- 2015Image Processing for Quantification of Machining Induced Changes in Subsurface Microstructure
- 2015Investigation of Cutting Parameters in Sustainable Cryogenic End Milling
- 2014Effect of machining environment on surface topography of 6082 T6 aluminium
- 2013A surface roughness and power consumption analysis when slot milling austenitic stainless steel in a dry cutting environmentcitations
- 2013A Surface Roughness and Power Consumption Analysis When Slot Milling Austenitic Stainless Steel in a Dry Cutting Environmentcitations
- 2013State-of-the-art cryogenic machining and processingcitations
- 2012Evaluation of Cryogenic CNC Milling of Ti-6Al-4V Titanium Alloy
- 2012Cryogenic Machining of Carbon Fibre
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012An initial study of the effect of using liquid nitrogen coolant on the surface roughness of inconel 718 nickel-based alloy in CNC millingcitations
- 2012Study of Cryogenics in CNC Milling of Metal Alloys
- 2012Study of the effects of cryogenic machining on the machinability of Ti-6Al-4V titanium alloy
- 2012Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluidscitations
- 2011Adiabatic shear band formation as a result of cryogenic CNC machining of elastomerscitations
- 2010The formation of adiabatic shear bands as a result of cryogenic CNC machining of elastomerscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Evaluation of Cryogenic CNC Milling of Ti-6Al-4V Titanium Alloy
Abstract
Machining titanium alloys is always considered difficult due to special material properties of these alloys and their strange behaviour during machining operations. Cryogenic cooling by using liquid gases has attracted considerable research since the early 20th century and is acknowledged as an effective technique for controlling the cutting temperature and improving machinability. Despite announcement of the industrial use of cryogenic milling systems, there are limited scientific studies on the effects of cryogenic cooling in CNC milling of titanium alloys. This paper presents one of the very first scientific attempts to study the effects of cryogenic cooling in CNC milling of the Ti-6Al-4V titanium alloy in comparison with dry machining. A series of machining trials have been conducted at the University of Bath and it has been proven that cryogenic machining has the potential to significantly improve the machinability of titanium alloys in CNC milling with considerable reductions in surface roughness and improved tool life. Investigations revealed that the introduction of liquid nitrogen as a coolant resulted in 2.5 times improvement in surface roughness of the machined parts as compared to dry machining while a maximum increase of 1.9% in power consumption was recorded.