People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johansen, Tom Keinicke
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018Ultra-Wideband Coplanar Waveguide to Asymmetric Coplanar Stripline Transition from DC to 165 GHzcitations
- 2017Coplanar transitions based on aluminum nitride interposer substrate for terabit transceiverscitations
- 2017Coplanar transitions based on aluminum nitride interposer substrate for terabit transceiverscitations
- 2012Study of split-ring resonators for use on a pharmaceutical drug capsule for microwave activated drug release
- 2011Microwave absorption properties of gold nanoparticle doped polymerscitations
- 2007Optimization of Packaging for PIN Photodiode Modules for 100Gbit/s Ethernet Applicationscitations
Places of action
Organizations | Location | People |
---|
document
Study of split-ring resonators for use on a pharmaceutical drug capsule for microwave activated drug release
Abstract
In this paper, a novel method for externally activating a pharmaceutical drug capsule by use of split-ring resonators (SRR) is introduced. To this end, the effect of the orientation of the SRRs on the ability to activate the capsules is examined. A coplanar waveguide is used to excite an identical pair of SRRs fabricated on a substrate, representing an enlarged lid for a pharmaceutical drug capsule. Orientations where the electric field component of a quasi-TEM wave lies across the gap of the SRRs provides the largest response. The optimal case is when the electric field component lies across the gap simultaneously with the magnetic field component normal to the SRRs. Furthermore, an analysis of the optimal conductivity and relative permittivity for enhanced temperature rise in the lid is performed. Conductivity of 0.09 S/m and relative permittivity of 12 shows the highest temperature rise.