Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valkiainen, M.

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Comparison of modeling and experimental results of modified Pt-based PEMFC cathode-catalystscitations

Places of action

Chart of shared publication
Keskinen, Jari
1 / 23 shared
Koponen, U.
1 / 1 shared
Bergelin, M.
1 / 3 shared
Kumpulainen, H.
1 / 1 shared
Tapper, U.
1 / 1 shared
Puhakka, Eini
1 / 9 shared
Peltonen, T.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Keskinen, Jari
  • Koponen, U.
  • Bergelin, M.
  • Kumpulainen, H.
  • Tapper, U.
  • Puhakka, Eini
  • Peltonen, T.
OrganizationsLocationPeople

document

Comparison of modeling and experimental results of modified Pt-based PEMFC cathode-catalysts

  • Keskinen, Jari
  • Koponen, U.
  • Bergelin, M.
  • Kumpulainen, H.
  • Tapper, U.
  • Valkiainen, M.
  • Puhakka, Eini
  • Peltonen, T.
Abstract

<p>Pt-based binary and ternary alloy catalysts were investigated by modeling methods and experimentally. The lattice parameters Of Pt, Pt3Cr, Pt3CO, Pt3Ir, Pt2CoCr, Pt2CoIr, Pt2Cr2 and Pt2Co2 were determined by molecular modeling methods. According to the optimized structures, the most typical crystal faces were generated. In order to get a good description of sterical and electrostatic factors of material surfaces, reconstruction of surface atoms was taken into account. It was shown that the alloying of Pt with base metals affect surface charge densities, which enables steering of surface reactions into desired positions on the catalyst surface. Both commercial (E-TEK) and laboratory-made catalyst powders and inks based on Pt:Co/C and Pt:Co:Cr/C were characterized voltammetrically. The active Pt surface area increased after activating the catalyst. This can most likely be attributed to the dissolving of Co and Cr from the alloys. All laboratory-made catalysts were also characterized by XRD, TEM and STEM/EDS.</p>

Topics
  • surface
  • x-ray diffraction
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • dissolving