Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rodriguez, Eduardo Saez

  • Google
  • 7
  • 9
  • 101

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing wastecitations
  • 2016Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxide38citations
  • 2016A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibrecitations
  • 2015Investigation of the strength of thermally conditioned basalt and e-glass fibrescitations
  • 2015Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?63citations
  • 2013Investigation of strength recovery of recycled heat treated glass fibres through chemical treatmentscitations
  • 2013Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre wastecitations

Places of action

Chart of shared publication
Jenkins, Peter
3 / 7 shared
Yang, Liu
7 / 36 shared
Thomason, James L.
7 / 27 shared
Bashir, Sairah Tahir
2 / 3 shared
Anderson, R.
1 / 2 shared
Basri, N. B.
1 / 1 shared
Liggat, John J.
1 / 36 shared
Mendez, Sara Riopedre
1 / 1 shared
Kao, Chih-Chuan
1 / 1 shared
Chart of publication period
2018
2016
2015
2013

Co-Authors (by relevance)

  • Jenkins, Peter
  • Yang, Liu
  • Thomason, James L.
  • Bashir, Sairah Tahir
  • Anderson, R.
  • Basri, N. B.
  • Liggat, John J.
  • Mendez, Sara Riopedre
  • Kao, Chih-Chuan
OrganizationsLocationPeople

document

Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste

  • Jenkins, Peter
  • Yang, Liu
  • Thomason, James L.
  • Rodriguez, Eduardo Saez
  • Kao, Chih-Chuan
Abstract

The disposal of end-of-life composite products in an environmentally friendly manner is one of the most important challenges facing the industry and community. In this presentation we will introduce two recently initiated EPSRC funded projects focussed on the cost effective recycling of end-of-life glass fibre composites from automotive and wind energy applications. The ultimate goal of these projects is to enable cost-effective regeneration of the mechanical properties of glass fibres which have been produced from thermal recycling of glass reinforced structural composites. This project has the potential to totally transform the economics of recycling GRP composites which would otherwise most likely be disposed of to landfill. A breakthrough in this field will enable such recycled fibres to compete with pristine materials in many large volume composite applications. The development of an economically viable process for regenerating the properties of thermally recycled glass fibres would have major technological, societal, economic, environmental impacts. Conservative estimates indicate that there is a potential to generate a global industry with an annual production of 1 million Tons of reusable regenerated glass fibres with a market value order of magnitude of £1,000M. The reuse of these materials could result in a huge reduction in the environmental impact of the glass-fibre industry where the replacement of pristine glass fibre products would equate to a global reduction in CO2 production of 400,000 Tons/annum from reduced melting energy requirements alone. Furthermore, such a technological development would also reduce the need for an annual landfill disposal of 2 million Tons of composite materials. These developments would clearly be in line with the growing societal and environmental pressure to reduce the use of landfill disposal, increase the reuse of valuable raw materials resources, and reduce the release of CO2 to the atmosphere.<br/><br/>The results of a study of the properties of glass fibres after thermal conditioning will be presented.The mechanical performance of rovings and single fibres of well-defined silane sized and unsized E-glass fibre samples was investigated at room temperature after thermal conditioning at temperatures up to 600°C. Thermal conditioning for only 15 minutes led to strength degradation of greater than 80% at higher temperatures. The room temperature strength of silane coated fibres was relatively stable up to 300°C but exhibited a precipitous drop at higher conditioning temperatures. Unsized fibres exhibited an approximately linear decrease in strength with increasing conditioning temperature. The results as discussed in terms of the changes in surface coating and bulk glass structure during heat conditioning.<br/>

Topics
  • impedance spectroscopy
  • surface
  • glass
  • glass
  • strength
  • structural composite