People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Liu
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres
- 2024Creep behavior of a precipitation-strengthened A2-B2 refractory high entropy alloy
- 2024On the interaction of grain-scale and hydride-scale stresses in hydrogen enriched zirconium alloy nuclear cladding via combined discrete dislocation plasticity and crystal plasticity finite element modellingcitations
- 2024Creep behavior and deformation mechanisms of precipitation-strengthened refractory high entropy alloys
- 2023The dependence of interfacial shear strength on temperature and matrix chemistry in glass fibre epoxy compositescitations
- 2022The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy composites
- 2022Development of slurry-jet erosion test for elastomeric materialscitations
- 2022Manufacturing and mechanical characterisation of unidirectional fique fibre reinforced polypropylene composites
- 2022Thermoset polymer scaling effects in the microbond test
- 2022Investigating the effect of silane coupling agent on glass fibre/thermoplastic interfacial adhesion
- 2022Manufacturing and mechanical characterisation of unidirectional fique fibres reinforced polypropylene composites
- 2020Upgrading and reuse of glass fibre recycled from end-of-life compositescitations
- 2020Micromechanical and spectroscopic characterisation of the curing performance of epoxy resins in the microbond testcitations
- 2020Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy compositescitations
- 2019Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based compositescitations
- 2019Investigation of chemical and physical surface changes of thermally conditioned glass fibrescitations
- 2019A study of the thermal degradation of glass fibre sizings at composite processing temperaturescitations
- 2018An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites
- 2018Are silanes the primary driver of interface strength in glass fibre composites?
- 2018Fiber-reinforced organic polymer aerogel
- 2018The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy compositescitations
- 2018Are silanes the primary driver of interface strength in glass fiber composites? An exploration of the relationship of chemical and physical parameters in the micromechanical characterisation of the apparent interfacial strength in glass fiber composites
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2017Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofiberscitations
- 2016Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxidecitations
- 2016A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibre
- 2016The role of the epoxy resin
- 2015Investigation of the strength of thermally conditioned basalt and e-glass fibres
- 2015Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?citations
- 2015An experimental approach to analysing rain droplet impingement on wind turbine blade materials
- 2015Strength of thermally conditioned glass fibre degradation, retention and regeneration
- 2015Investigation of the strength loss of glass fibre after thermal conditioningcitations
- 2013Investigation of strength recovery of recycled heat treated glass fibres through chemical treatments
- 2013Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste
- 2009Analysis of the microbond test using nonlinear fracture mechanics
Places of action
Organizations | Location | People |
---|
document
Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste
Abstract
The disposal of end-of-life composite products in an environmentally friendly manner is one of the most important challenges facing the industry and community. In this presentation we will introduce two recently initiated EPSRC funded projects focussed on the cost effective recycling of end-of-life glass fibre composites from automotive and wind energy applications. The ultimate goal of these projects is to enable cost-effective regeneration of the mechanical properties of glass fibres which have been produced from thermal recycling of glass reinforced structural composites. This project has the potential to totally transform the economics of recycling GRP composites which would otherwise most likely be disposed of to landfill. A breakthrough in this field will enable such recycled fibres to compete with pristine materials in many large volume composite applications. The development of an economically viable process for regenerating the properties of thermally recycled glass fibres would have major technological, societal, economic, environmental impacts. Conservative estimates indicate that there is a potential to generate a global industry with an annual production of 1 million Tons of reusable regenerated glass fibres with a market value order of magnitude of £1,000M. The reuse of these materials could result in a huge reduction in the environmental impact of the glass-fibre industry where the replacement of pristine glass fibre products would equate to a global reduction in CO2 production of 400,000 Tons/annum from reduced melting energy requirements alone. Furthermore, such a technological development would also reduce the need for an annual landfill disposal of 2 million Tons of composite materials. These developments would clearly be in line with the growing societal and environmental pressure to reduce the use of landfill disposal, increase the reuse of valuable raw materials resources, and reduce the release of CO2 to the atmosphere.<br/><br/>The results of a study of the properties of glass fibres after thermal conditioning will be presented.The mechanical performance of rovings and single fibres of well-defined silane sized and unsized E-glass fibre samples was investigated at room temperature after thermal conditioning at temperatures up to 600°C. Thermal conditioning for only 15 minutes led to strength degradation of greater than 80% at higher temperatures. The room temperature strength of silane coated fibres was relatively stable up to 300°C but exhibited a precipitous drop at higher conditioning temperatures. Unsized fibres exhibited an approximately linear decrease in strength with increasing conditioning temperature. The results as discussed in terms of the changes in surface coating and bulk glass structure during heat conditioning.<br/>