People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Liu
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Non-Circular Cross-Section Fibres for Composite Reinforcement—A Review with a Focus on Flat Glass Fibres
- 2024Creep behavior of a precipitation-strengthened A2-B2 refractory high entropy alloy
- 2024On the interaction of grain-scale and hydride-scale stresses in hydrogen enriched zirconium alloy nuclear cladding via combined discrete dislocation plasticity and crystal plasticity finite element modellingcitations
- 2024Creep behavior and deformation mechanisms of precipitation-strengthened refractory high entropy alloys
- 2023The dependence of interfacial shear strength on temperature and matrix chemistry in glass fibre epoxy compositescitations
- 2022The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy composites
- 2022Development of slurry-jet erosion test for elastomeric materialscitations
- 2022Manufacturing and mechanical characterisation of unidirectional fique fibre reinforced polypropylene composites
- 2022Thermoset polymer scaling effects in the microbond test
- 2022Investigating the effect of silane coupling agent on glass fibre/thermoplastic interfacial adhesion
- 2022Manufacturing and mechanical characterisation of unidirectional fique fibres reinforced polypropylene composites
- 2020Upgrading and reuse of glass fibre recycled from end-of-life compositescitations
- 2020Micromechanical and spectroscopic characterisation of the curing performance of epoxy resins in the microbond testcitations
- 2020Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy compositescitations
- 2019Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based compositescitations
- 2019Investigation of chemical and physical surface changes of thermally conditioned glass fibrescitations
- 2019A study of the thermal degradation of glass fibre sizings at composite processing temperaturescitations
- 2018An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites
- 2018Are silanes the primary driver of interface strength in glass fibre composites?
- 2018Fiber-reinforced organic polymer aerogel
- 2018The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy compositescitations
- 2018Are silanes the primary driver of interface strength in glass fiber composites? An exploration of the relationship of chemical and physical parameters in the micromechanical characterisation of the apparent interfacial strength in glass fiber composites
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2018Towards a new generation of glass fiber products based on regenerated fiber thermally recycled from end-of-life GRP and GRP manufacturing waste
- 2017Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofiberscitations
- 2016Regenerating the strength of thermally recycled glass fibres using hot sodium hydroxidecitations
- 2016A cost-effective chemical approach to retaining and regenerating the strength of thermally recycled glass fibre
- 2016The role of the epoxy resin
- 2015Investigation of the strength of thermally conditioned basalt and e-glass fibres
- 2015Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites?citations
- 2015An experimental approach to analysing rain droplet impingement on wind turbine blade materials
- 2015Strength of thermally conditioned glass fibre degradation, retention and regeneration
- 2015Investigation of the strength loss of glass fibre after thermal conditioningcitations
- 2013Investigation of strength recovery of recycled heat treated glass fibres through chemical treatments
- 2013Regeneration of the performance of glass fibre recycled from End-of-life composites or glass fibre waste
- 2009Analysis of the microbond test using nonlinear fracture mechanics
Places of action
Organizations | Location | People |
---|
document
Investigation of the strength of thermally conditioned basalt and e-glass fibres
Abstract
It is projected that the total global production of composite materials will significantly exceed 10 million tons by 2015 of which over 90% will contain glass fibre reinforcement. Traditionally most of this composite material would be directed to landfill at end of life. Thus, recycling composites has started to gain great importance due to environmental and commercial aspects. The development of an efficient process to enable cost-effective regeneration of the mechanical properties of fibre for recycling, could result in a huge decrease of landfill disposal as well as the attenuation in CO2 emissions.<br/>There are several processes available for recycling composites but the most technologically advanced is thermal recycling. However, during the recycling process glass fibres that are treated at temperatures in a range between 300 up to 600 °C exhibit a huge drop in strength and as a result sometimes are considered as not reusable or unsuitable for reprocessing [1]. Although basalt fibre has been available for some time, recent development in the processing and production of basalt has resulted in the availability of continuous basalt fibre in similar form to traditional glass fibre. It is often stated that basalt has better high temperature resistance compared to E-glass fibre [2,3]. If this were true then basalt fibre may show better prospects to survive an end-of-life composite thermal recycling process as a useful reinforcement.<br/>The present work investigates and compares the changes in the mechanical properties of basalt fibres and E-Glass fibres when heat-treated to between 300 – 600 °C. Since the fibre surface plays an important role in the retained strength of brittle fibres, the investigation used fibre with similar epoxy compatible sizings in order to maximise the quality of the comparison. Results of single fibre testing of tensile strength and modulus are presented and discussed.<br/>