People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicdaeid, Niamh
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Heavy metal-free MnInPSeS alloyed quantum dots-molecularly imprinted polymer as an electrochemical nanosensor for the detection of the synthetic cathinone, 3,4-methylenedioxypyrovaleronecitations
- 2023Cadmium-free silica-encapsulated molecularly imprinted AuZnCeSeS quantum dots nanocomposite as an ultrasensitive fluorescence nanosensor for methamphetamine detectioncitations
- 2022Thiolated gamma-cyclodextrin-polymer-functionalized CeFe3O4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxidecitations
- 2022Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III)citations
- 2022Fabrication of a near-infrared fluorescence-emitting SiO2-AuZnFeSeS quantum dots-molecularly imprinted polymer nanocomposite for the ultrasensitive fluorescence detection of levamisolecitations
- 2021Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenolcitations
- 2020Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probecitations
- 2019Multi-shaped cationic gold nanoparticle-L-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocainecitations
- 2016A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emiratescitations
- 2016Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogscitations
- 2011The recoverability of fingerprints on nonporous surfaces exposed to elevated temperatures
- 2009Evaluation of available techniques for the recovery of latent fingerprints from untreated plywood surfaces
- 2008Recovery of fingerprints from arson scenes
- 2008Comparison of vacuum metal deposition and powder suspension for recovery of fingerprints on wetted nonporous surfaces
Places of action
Organizations | Location | People |
---|
article
The recoverability of fingerprints on nonporous surfaces exposed to elevated temperatures
Abstract
Previous work by the authors compared the effectiveness of ninhydrin, 1,8-diazafluoren-9-one (DFO), and physical developer (PD) as enhancement reagents for fingerprints deposited on paper that had been exposed to elevated temperatures. This research extends the previous study and investigates the recoverability of fingerprints deposited onto glass and ceramic surfaces in order to mimic the environment these surfaces may be exposed to within a fire scene. This research has shown that ridge detail is still retrievable from ceramic after exposure to 800°C (1472°F) for 20 minutes, although, at temperatures in excess of 350C (662F), ridge detail would only survive if the fingerprints had been protected from direct exposure to radiant heat and direct air flow across the surface. This investigation has shown that the most effective enhancement technique overall was found to be superglue followed by BY40 at all temperatures except 200 C (392F) in which case, iron powder suspension was superior. However, superglue followed by BY40 may have to be excluded as a prospective enhancement technique for many situations because the nonporous surface may become wet during firefighting activity. The use of silver vacuum metal deposition has been demonstrated to develop fingerprints after exposure to higher temperatures and may have future potential for this application.