People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramousse, Severine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2014Densification and grain growth kinetics of Ce 0.9 Gd 0.1 O 1.95 in tape cast layers: The influence of porositycitations
- 2014Thermo-mechanical properties of SOFC components investigated by a combined method
- 2014Densification and grain growth kinetics of Ce0.9Gd0.1O1.95 in tape cast layers: The influence of porositycitations
- 2013Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body
- 2013Sintering process optimization for multi-layer CGO membranes by in situ techniquescitations
- 2013Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firingcitations
- 2013Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firingcitations
- 2013The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powderscitations
- 2012Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body
- 2012Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body
- 2012Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures
- 2012Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures
- 2012Characterization of impregnated GDC nano structures and their functionality in LSM based cathodescitations
- 2011Manufacturing and characterization of metal-supported solid oxide fuel cellscitations
- 2011Manufacturing and characterization of metal-supported solid oxide fuel cellscitations
- 2011Planar metal-supported SOFC with novel cermet anodecitations
- 2011Planar metal-supported SOFC with novel cermet anodecitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Development of Planar Metal Supported SOFC with Novel Cermet Anodecitations
- 2009Development of Planar Metal Supported SOFC with Novel Cermet Anodecitations
- 2006Break down of losses in thin electrolyte SOFCscitations
- 2005Nanostructured lanthanum manganate composite cathodecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body
Abstract
Sintering of ceramic materials is a critical process, especially when the components are shaped as multilayer. Microstructural changes and stresses take place in ceramics as single layer from the green stage to the densification stage, leading to shape distortion, delamination and cracks. The characterization of thermo-mechanical properties, such as viscoelasticity, enables a prediction of microstructural stability of SOFCs. Tape-cast bi-layer structures for CGO/YSZ and CGO/ScYSZ was studied during the thermal processing. Different sintering kinetics of bi-layer tape give rise to localized tensile stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers was carried out by thermo-mechanical analysis (TMA). The results from the different techniques were found complementary and viscous behavior of the layered ceramics was verified.