People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Landini, Gabriel
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Multi-resolution Correlative Ultrastructural and Chemical Analysis of Carious Enamel by Scanning Microscopy and Tomographic Imagingcitations
- 2018Automated non-invasive cell counting in phase contrast microscopy with automated image analysis parameter selectioncitations
- 2018Structure-function correlative microscopy of peritubular and intertubular dentinecitations
- 2017Model-based Correction of Segmentation Errors in Digitised Histological Imagescitations
- 2016Understanding nature’s residual strain engineering at the human dentine-enamel junction interfacecitations
- 2015Automated optimisation of cell segmentation parameters in phase contrast using discrete mereotopology
- 2014Structure-mechanical function relations at nano-scale in heat-affected human dental tissuecitations
- 2014Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strainscitations
- 2014Semi-automated cell counting in phase contrast images of epithelial monolayers
- 2014Nano-scale thermo-mechanical structure-property relationships in human dental tissues studied by nanoindentation and synchrotron X-ray scatteringcitations
- 2013Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisationcitations
- 2013Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentinecitations
- 2009Ultrasonic Scaler Oscillations and Tooth-surface Defectscitations
- 2007Influence of compressive and deflective force on powered toothbrush filaments
- 2001The influence of mixing ratio on the toughening mechanisms of a hand-mixed zinc phosphate dental cementcitations
Places of action
Organizations | Location | People |
---|
document
Automated optimisation of cell segmentation parameters in phase contrast using discrete mereotopology
Abstract
It has been shown previously that the number of epithelial cells in a monolayer can be determined in vitro using phase contrast microscopy by subtracting images mean-filtered with two different kernel radii and then thresholding to segment cells. Careful selection of filter sizes was essential to ensure the number of segmented regions corresponded accurately with the number of cells in the image, however manual parameter selection and verification is time-consuming and prone to human error. We propose an intelligent imaging approach for evaluating the success of filter size combinations for cell detection using discrete mereotopology to compare segmentations with ground truth binary images of stained cell nuclei. Applying this approach to phase contrast images of H400 epithelial monolayers with varying levels of confluency, a region in the parameter space could be identified where more than 90% of cells were correctly detected.