People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Papatzani, Styliani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortarscitations
- 2021Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates
- 2020A step by step methodology for building sustainable cementitious matricescitations
- 2019Optimization of low carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particlescitations
- 2019Permeable nanomontmorillonite and fibre reinforced cementitious binderscitations
- 2019ICE Themes Low Carbon Concrete
- 2019From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fibre-Cement Nanohybridscitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocompositescitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano- montmorillonite cementitious nanocompositescitations
- 2018Lowering cement clinker:citations
- 2018Lowering cement clinker::A thorough, performance based study on the use of nanoparticles of SiO2 or montmorillonite in Portland limestone nanocompositescitations
- 2018Polycarboxylate / nanosilica modified quaternary cement formulations - enhancements and limitationscitations
- 2017Construction, demolition and excavation waste management in EU/Greece and its potential use in concrete
- 2017Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materialscitations
- 2016Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructurecitations
- 2015Dispersed Inorganic or Organomodified Montmorillonite Clay Nanoparticles for Blended Portland Cement Pastescitations
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015RC structural walls under cyclic loading - Experimental verification of code overestimation of transverse reinforcement reduction potentials
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
document
The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
Abstract
The complex behaviour of concrete depends on the properties and response of the main cement hydration products; calcium silicate hydrates (C-S-H), calcium silicate aluminates and calcium hydroxide. C-S-H is nanosized; therefore, the addition of nanoparticles can induce modifications affecting larger scale phenomena. In this research the addition of silica nanoparticles (nS) to blended cement formulations was investigated with the aim of enhancing durability and lowering environmental impact. The hydration products, microstructure and compressive strength of the early and later ages hardened cement paste were compared in two series of cement pastes. The first one contained Portland limestone cement, limestone and nanosilica at 0.1%, 0.5%, 1% and 1.5% by mass of solids and the second series, Portland limestone cement, limestone, fly ash and silica nanoparticles at 0.1%, 0.2%, 0.5% and 1% by mass of solids.The water to binder ratio was kept constant at 0.3 and specimens were tested up to 90 days of age. The size of nanosilica was confirmed by transmission electron microscopy. Investigating the performance of the first series of pastes, it was concluded that nS exhibits a pozzolanic behaviour. In the second series of pastes, the results presented do not suggest depletion of the Ca(OH)2 in the cement paste. The delayed pozzolanic reaction of the fly ash particles was attributed to the addition of silica nanoparticles, which created denser hydration products, acting as ion penetration barriers around fly ash particles. Thermogravimetric analyses and scanning electron microscopy provided a further justification of the hypothesis. Transmission electron microscopy was also used to determine the size of the nanoparticles. The research reported was part of a much broader research project supported by the EU, and involving industrial and academic partners throughout Europe, to investigate nanotechnology enhanced cements.