People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calabria-Holley, Juliana
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Improving the pozzolanic reactivity of clay, marl and obsidian through mechanochemical or thermal activationcitations
- 2022The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonitecitations
- 2021Investigation of the variability in the components of natural plant fibres subjected to hornification cycles
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Autogenous self-healing of fibre cements
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2019ICE Themes Low Carbon Concrete
- 2018Effect of recycled geopolymer concrete aggregate on strength development and consistence of Portland cement concretes
- 2018Concretes incorporating recycled geopolymer aggregate - Implications and properties correlations
- 2018Chemical aspects related to using recycled geopolymers as aggregatescitations
- 2018Modification of hemp shiv properties using water-repellent sol–gel coatingscitations
- 2018Modification of Hemp Shiv Properties using Water-repellent Sol-gel Coatingscitations
- 2016The effects of sol-gel silicates on hydration kinetics and microstructure of Portland cement systems
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015Effect of nanolimestone particles on hydration and flexural strength of Portland limestone cement pastes
- 2015Sol-Gel Technology as a Seeding Agent for Portland Cement Systems
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
article
Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Abstract
The macrolevel properties of concrete; strength and durability are dependent on the hydration of cement. The main products of the chemical reactions of cement clinker with water, are calcium silicate hydrates (C-S-H), calcium aluminate hydrates and calcium hydroxide. C-S-H, the major binding and strengthening factor within the hydrating cement paste, is nanosized. Therefore, it is believed that the addition of nanoparticles can modify the characteristics of the C-S-H in nanoenhanced pastes, inducing subsequent alterations at larger scale phenomena. In this research the addition of nanoparticles of silica, referred to as nanosilica (nS) to blended cement formulations was investigated with the aim of enhancing durability and lowering environmental impact. The hydration products, microstructure and compressive strength of the early and later ages (from 1 day until half a year old) hardened cement paste were compared in a series of cement pastes. The reference paste contained Portland limestone cement and additional limestone (summing up to 60% Portland cement and 40% limestone by mass) and the nS enhanced pastes contained nanosilica at 0.1%, 0.5%, 1% and 1.5% by mass of solids. The water to binder ratio was kept constant at 0.3. The size of nanosilica was confirmed by transmission electron microscopy to be in the order of 8 nm to 50 nm, diameter. Performance evaluation of the pastes, indicated that nS exhibits a pozzolanic behaviour consuming calcium hydroxide to form additional C-S-H. Additionally, for pastes with 40% substitution of cement by limestone, low nS content (0.1% to 0.5%) is favouring strength gain even at later ages. Thermogravimetric analyses and scanning electron microscopy provided a further justification of the above hypothesis. The research reported was part of a much broader research project supported by the EU, and involving industrial and academic partners throughout Europe, to investigate nanotechnology enhanced cements.