People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sadeghi, Hatef
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2020Radical enhancement of molecular thermoelectric efficiencycitations
- 2019Discriminating Seebeck Sensing of Moleculescitations
- 2019Quantum and Phonon Interference Enhanced Molecular-Scale Thermoelectricitycitations
- 2019Unusual length dependence of the conductance in cumulene molecular wirescitations
- 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Moleculescitations
- 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictionscitations
- 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wirescitations
- 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctionscitations
- 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and dopingcitations
- 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wirescitations
- 2017Thermoelectricity in vertical graphene-C60-graphene architecturescitations
- 2016Theory of electron and phonon transport in nano and molecular quantum devices
- 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructurescitations
- 2013Classic and quantum capacitances in bernal bilayer and trilayer graphene field effect transistorcitations
Places of action
Organizations | Location | People |
---|
thesis
Theory of electron and phonon transport in nano and molecular quantum devices
Abstract
Understanding the electronic and phononic transport properties of junctions consisting of a scattering region such as a nanoscale region or molecule connected two or more electrodes is the central basis for future nano and molecular scale applications. The theoretical and mathematical techniques to treat electron and phonon transport are leading to model the physical properties of nano and molecular scale junctions. In this thesis, I use these methods not only to understand the experimental observations by experimental collaborators, but also to develop strategies to design and engineer molecular electronic building blocks, thermoelectric devices and sensors. <br/>In this thesis, after a discussion about the theoretical methods used to model electron and phonon transport through the nanoscale junctions, I cover four main results in the areas of molecular sensing, new graphene-based molecular junctions, quantum interference rules and thermoelectricity (or thermal management). I demonstrate the discriminating sensing properties of new bilayer-graphene, sculpturene-based nano-pore devices for DNA sequencing. A unique and novel signal processing method is presented to selectively sense the nucleobases based on direct electrical current. Then I consider a newly developed platform for single-molecule device fabrication based on electro-burnt graphene nano-junctions, which allows three terminal device realization at a single molecule level with gating capability. I provide a fundamental understanding of transport phenomena in these junctions. Furthermore, I discuss our newly developed mid-gap transport theory for single molecules, where in the weak coupling regime and in the vicinity of the middle of the HOMO and LUMO gap, a minimal parameter-free theory of the connectivity dependent transport and quantum interference could be used to model conductance measurements in polycyclic aromatic hydrocarbons. After these discussion of the electronic properties of the junctions, I consider the phonon transport through the nano and molecular scale devices. This allows me to identify strategies for controlling the transmission of phonons from one side of the junction to another for both low-power thermoelectric and thermal management devices.