Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bermingham, Sean K.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Modelling of co-rotating twin-screw extruders in the pharmaceutical industry Icitations

Places of action

Chart of shared publication
Rajniak, Pavol
1 / 1 shared
Islam, Muhammad Tariqul
1 / 7 shared
Mitchell, Niall
1 / 1 shared
Fuentes-Gari, Maria
1 / 1 shared
Robertson, John
1 / 21 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Rajniak, Pavol
  • Islam, Muhammad Tariqul
  • Mitchell, Niall
  • Fuentes-Gari, Maria
  • Robertson, John
OrganizationsLocationPeople

document

Modelling of co-rotating twin-screw extruders in the pharmaceutical industry I

  • Rajniak, Pavol
  • Islam, Muhammad Tariqul
  • Mitchell, Niall
  • Fuentes-Gari, Maria
  • Bermingham, Sean K.
  • Robertson, John
Abstract

Twin-screw extruders are being increasingly applied in the pharmaceutical industry for the manufacture of solid dispersions. In particular, Hot Melt Extrusion (HME) is a viable manufacturing alternative for poorly soluble drugs that are difficult to process. This is due to the high shear stress applied in the process, which enhances mixing of the base polymer with the dispersed API. Delivery systems that can be obtained using this technology include pellets, granules, sustained release tablets and implants. Experiments for HME are typically very labour-intensive, involving the use of highly viscous polymers, high pressures, and require proper cleaning between runs. Identifying the critical experiments to perform based on model simulations would thus be highly desirable. Single-component modelling of twin-screw extrusion processes could be beneficial in the following areas: identifying optimal screw configurations, tracking the degree of melting and when identifying the area within the extruder where the polymer becomes completely melted.

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • experiment
  • simulation
  • melt
  • melt extrusion