People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paegle, Ieva
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Optical sensing of ph and o 2 in the evaluation of bioactive self-healing cementcitations
- 2019Optical sensing of ph and o2 in the evaluation of bioactive self-healing cementcitations
- 2016Cracking and load-deformation behavior of fiber reinforced concrete: Influence of testing methodcitations
- 2016Phenomenological interpretation of the shear behavior of reinforced Engineered Cementitious Composite beamscitations
- 2015Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates
- 2014Influence of bending test configuration on cracking behavior of FRC
- 2013Evaluation of test methods used to characterize fiber reinforced cementitious composites
- 2012Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)
- 2011Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)
- 2011Shear crack formation and propagation in reinforced Engineered Cementitious Composites
- 2010Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams
Places of action
Organizations | Location | People |
---|
document
Influence of bending test configuration on cracking behavior of FRC
Abstract
This paper describes an investigation of the influence of the testing configuration for Fiber Reinforced Concrete in bending and aims at evaluating the influence of the test configuration details on the characterization of the material. Two different types of FRC, Steel Fiber Reinforced Concrete (SFRC) and Engineered Cementitious Composites (ECC), were tested and are described in this study. The materials were chosen so that one of them would be strain hardening (ECC) and the other tension softening (SFRC).<br/>Notched and un-notched three- and four-point bending tests were carried out to determine the flexural load-deformation response of FRC. This research focuses particularly on the influence of the appearance and depth of the notch on the cracking behavior of FRC. For this purpose, several specimens, both un-notched and notched with different depths of the notch (25 mm and 45 mm), were tested. The results obtained in the various tests are compared to determine to what extent the notch can affect cracking behavior and the resulting<br/>evaluation of the material according to the method described in the standard. Formation of cracking and the crack development has been documented by means of a digital image correlation method.