People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Döhler, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Efficient Structural System Reliability Updating with Subspace-Based Damage Detection Information
Abstract
Damagedetectionsystemsandalgorithms(DDSandDDA)provideinformationofthe structuralsystemintegrityincontrasttoe.g.localinformationbyinspectionsornon-destructivetestingtechniques.However,thepotentialofutilizingDDSinformationforthe structuralintegrityassessmentandprognosisishardlyexploitednortreatedinscientific literatureuptonow.InordertoutilizetheinformationprovidedbyDDSforthestructural performance, usually high computational efforts for the pre-determination of DDS reliability arerequired.Inthis paper,anapproachfortheDDSperformancemodellingisintroduced buildinguponthenon-destructivetestingreliabilitywhichappliestostructuralsystemsand DDScontainingastrategytoovercomethehighcomputationaleffortsforthepre-determination of the DDS reliability. This approach takes basis in the subspace-based damage detection method and builds upon mathematical properties of the damage detection algorithm. Computational efficiency is gained by calculating the probability of damage indication directly withoutnecessitatinga pre-determinationforall damagestates.Thedevelopedapproachis appliedtoastatic,dynamic,deteriorationandreliabilitystructuralsystemmodel, demonstrating the potentials for utilizing DDS for risk reduction