People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Peter Noe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full-scale tests of two-storey precast reinforced concrete shear walls:Investigation of strength and deformation capacitycitations
- 2024Full-scale tests of two-storey precast reinforced concrete shear wallscitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part I: Experimental investigationcitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part Icitations
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Solid finite element limit analysis for modelling of pile caps
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 20153-D cohesive finite element model for application in structural analysis of heavy duty composite pavementscitations
- 2015Modelling of composite concrete block pavement systems applying a cohesive zone model
- 2012Characterization of mixed mode crack opening in concretecitations
- 2012Characterization of mixed mode crack opening in concretecitations
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2006Modeling of ECC materials using numerical formulations based on plasticity
- 2006Simulation of strain-hardening in ECC uniaxial test specimen by use of a damage mechanics formulation
- 2006Condition For Strain-Hardening In Ecc Uniaxial Test Specimen
Places of action
Organizations | Location | People |
---|
document
Simulation of strain-hardening in ECC uniaxial test specimen by use of a damage mechanics formulation
Abstract
This paper discusses the considerations for the establishment of a damage model for ECC. Three different length scales are used in the approach for deriving the damage model. On each length scale important phenomena are investigated by use of numerical and analytical calculations. On the micro scale it is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. On the meso scale I it is shown that the maximum crack opening observed during crack propagation in ECC is small, 20 ¹m and also small compared to typical deformations at peak bridging stress. On the meso scale II interaction between initial flaws and micro cracks was observed. A framework is presented for the formulation of a damage mechanics model comprising the damage mechanisms on the micro and meso scale.