People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgugan, Malcolm
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Understanding Fatigue Delamination Crack Growth in a Wind Turbine Rotor Blade Through an Element Testing
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2016Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structurescitations
- 2015Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validationcitations
- 2015Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials
- 2015Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detectioncitations
- 2015Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materialscitations
- 2015Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation
- 2015Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor
- 2013Bondlines – Online blade measurements (October 2012 and January 2013)
- 2011Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Fundamentals for remote condition monitoring of offshore wind turbines
- 2008Full Scale Test of a SSP 34m boxgirder 2
- 2006Detecting and identifying damage in sandwich polymer composite by using acoustic emission
Places of action
Organizations | Location | People |
---|
report
Full Scale Test of a SSP 34m boxgirder 2
Abstract
This report presents the setup and result from three static full-scale tests of the reinforced glass fiber/epoxy box girder used in a 34m wind turbine blade. One test was without reinforcement one with cap reinforcement and the final test was with rib reinforcement. The cap reinforcement test was part of a proof of concept investigation for a patent. The tests were performed at the Blaest test facility in August 2007. The tests are an important part of a research project established in cooperation between Risø National Laboratory for sustainable energy – Technical university of Denmark, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen’s PhD thesis. This report is the second data report containing the complete test data for the three full-scale tests. This report deals only with the test methods and the obtained results, no conclusions are drawn. These can be found in papers and patent referenced in the data report. Various kinds of measuring equipment have been used during these tests: acoustic emission, force transducers, strain gauges and optical deformation measuring system (DIC). The experimental investigation consisted of the following tests: 1) Flapwise bending with no reinforcement 2) Flapwise bending with wire reinforcements 3) Flapwise bending with rib reinforcements