People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Jens Henrik
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023A modified split-Hopkinson pressure bar setup enabling stereo digital image correlation measurements for flexural testingcitations
- 2022The in-plane expansion of fractured thermally pre-stressed glass panescitations
- 2022High strain rate characterisation of soda-lime-silica glass and the effect of residual stressescitations
- 2021Tensile behaviour of soda-lime-silica glass and the significance of load duration – A literature reviewcitations
- 2021A connected glass community
- 2019Experimental Study of Residual Stresses in Hybrid Laser Arc and Submerged Arc-Welded 10-mm-Thick Low-Carbon Steel Platescitations
- 2019Experimental Study of Residual Stresses in Hybrid Laser Arc and Submerged Arc-Welded 10-mm-Thick Low-Carbon Steel Platescitations
- 2019An experimental investigation of the flexural strength of soda–lime–silica glass at high loading ratescitations
- 2019Architectural Glasscitations
- 2019A novel full-view split Hopkinson pressure bar technique for flexural testing
- 2016Stress relaxation in tempered glass caused by heat soak testingcitations
- 2016Stress relaxation in tempered glass caused by heat soak testingcitations
- 2016Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study
- 2013Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams
- 2013A model for spalling of HPC thin plates exposed to firecitations
- 2013Fire performance of basalt FRP mesh reinforced HPC thin plates
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2009The Fracture Process of Tempered Soda-Lime-Silica Glasscitations
- 2007Mechanically reinforced glass beams
- 2007Mechanically reinforced glass beams
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
Places of action
Organizations | Location | People |
---|
booksection
Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study
Abstract
This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering process. The structural relaxation is taken into account using Narayanaswamy’s model. The motiva-tion for this work is to study the effect of the reduction of the hole and edge minimum distances, which are defined according to EN 12150-1. It is the objective of the paper to demonstrate and elucidate the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges and corners. Furthermore a comparison between the minimal residual stresses at holes and the residual stresses at other areas of the glass plate (edge, chamfer and far-field stresses) is made.