People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Peter Noe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full-scale tests of two-storey precast reinforced concrete shear walls:Investigation of strength and deformation capacitycitations
- 2024Full-scale tests of two-storey precast reinforced concrete shear wallscitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part I: Experimental investigationcitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part Icitations
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Solid finite element limit analysis for modelling of pile caps
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 2017General cracked-hinge model for simulation of low-cycle damage in cemented beams on soilcitations
- 20153-D cohesive finite element model for application in structural analysis of heavy duty composite pavementscitations
- 2015Modelling of composite concrete block pavement systems applying a cohesive zone model
- 2012Characterization of mixed mode crack opening in concretecitations
- 2012Characterization of mixed mode crack opening in concretecitations
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2011Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2010Finite Element Implementation of a Glass Tempering Model in Three Dimensionscitations
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007An implementation of 3D viscoelatic behavior for glass during toughening
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2007On the application of cohesive crack modeling in cementitious materialscitations
- 2006Modeling of ECC materials using numerical formulations based on plasticity
- 2006Simulation of strain-hardening in ECC uniaxial test specimen by use of a damage mechanics formulation
- 2006Condition For Strain-Hardening In Ecc Uniaxial Test Specimen
Places of action
Organizations | Location | People |
---|
document
An implementation of 3D viscoelatic behavior for glass during toughening
Abstract
The paper presents a derivation of an incremental formulation for the thermorheological material behavior of glass during the toughening process. The objective of this paper is to provide a constitutive relationship and a discussion for implementing a 3D thermo-viscoelastic material in a numerical simulation based on the Finite Element Method. Furthermore, an analytical solution for testing the implementation and a 3D example of toughening – the strip model are described. The basic equations provided are general and have been implemented and tested in a user supplied subroutine in the commercial FE-Software ABAQUS.It has to be emphasized that other phenomena than stress relaxation are present during the toughening process, however, the purpose of this paper is only to provide a model for the thermo viscoelastic behavior.