People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Qingfeng
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolidescitations
- 2020Process for producing metal alloy nanoparticles
- 2019Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cellscitations
- 2019Dynamics of double-pulse laser printing of copper microstructurescitations
- 2018Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameterscitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Guanidinium nonaflate as a solid-state proton conductorcitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2015The effect of preparation method on the proton conductivity of indium doped tin pyrophosphatescitations
- 2015Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranescitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cellscitations
- 2014Physicochemical properties of 1,2,4-triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2013Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranescitations
- 2011Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cellscitations
- 20101.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysiscitations
- 2001Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells]
Places of action
Organizations | Location | People |
---|
thesis
Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes
Abstract
Water electrolysis for hydrogen production has been predicted to get a prominent role in the energy system of the future. Current low temperature technologies rely on expensive noble metal catalysts and high temperature systems requires special construction materials to withstand the high temperatures. Electrolysis in the intermediate temperature (IT) region (200-400 °C) is of interest as it would allow for the use of non-noble metal catalysts, due to the improved kinetics, and a wide range of construction materials as a result of the more benign temperature. At these temperatures water is supplied as steam.This work centred on the design and development of a novel steam electrolysis concept based on phosphate electrolytes capable of operating in the IT range. Central for the work was the selection and evaluation of the materials and components for the test setup and cells as well as the technological issues and challenges faced.<br/>A setup suitable for intermediate temperature electrolysis has been constructed in order to accommodate testing in the IT region. This included the evaluation of multiple generations of components such as end plates and flow plates.Chemical vapour deposition of tantalum was used to protect stainless steel components from the highly oxidative environment of the oxygen side of the electrolyser. While such protection should not be necessary on the hydrogen side, it was found that the best results were obtained using tantalum coated stainless steel flow plates not only on the oxygen side but at the hydrogen side as well.<br/>Additional key steps and components for electrolysis testing are detailed in this thesis. This includes gas diffusion layers (GDL), sealing, cell assembly techniques, test operation, electrolytes and electrocatalysts.Gas diffusion layers of carbon with a PTFE bound micro-porous layer was used for the cathode side and tantalum coated stainless steel felt was used for the anode side due to the need of corrosion protection. For the cathode side a platinum electrocatalyst was used as benchmark (Pt-black ≈ 8 mg/cm<sup>2</sup>) and iridium oxide was used for the anode (≈ 3 mg/cm2). Symmetrical cell testing for hydrogen pumping at 200 _C revealed the cathode gas diffusion layers to be unstable over time. After 60 hours, the electrode resistance was more than tripled. The most prominent reason for this was thought to be a softening of the PTFE in the cathode micro-porous layer.<br/>CsH<sub>2</sub>PO<sub>4</sub> and Sn<sub>0.9</sub>In<sub>0.1</sub>P<sub>2</sub>O<sub>7</sub> were used as proof-of-concept electrolytes, with emphasis on the latter electrolyte. Evaluation of electrolysis cells with these electrolytes was done with a range of tools constantly under development.These tools included regression analysis of I-V curves, reference electrode measurements and electrochemical impedance spectroscopy (EIS). While reference electrode measurements were found hard to optimise, EIS, and especially complex non-linear least-square (CNLS) fitting, was found very useful. CNLS allowed for the estimation of electrolyte resistance and polarisation resistances giving a detailed view of the novel system.<br/>Electrolysis with CsH<sub>2</sub>PO<sub>4</sub> as electrolyte revealed a need for steam on both cathode and anode in order to prevent dehydration of the electrolyte. Additional stabilisation in the form of SiC fibres was found to increase longevity considerably. Highest achieved current density was 60 mA/cm<sup>2</sup> at 2.0 V and 250 °C.<br/>Measurements using Sn<sub>0.9</sub>In<sub>0.1</sub>P<sub>2</sub>O<sub>7</sub> as electrolyte, Pt black as cathode electrocatalyst and IrO<sub>2</sub> as anode electrocatalyst gave current densities as high as 313 mA/cm<sup>2</sup> at 1.9 V and 200 °C. The stability of the electrolyte was found to be high at 200 °C and a water partial pressure of 0.05 atm. For stabilisation of the electrolyte at 250 °C a higher water partial pressure is needed. Variation of temperature from 200-250 °C showed both signs of activation of electrode processes and electrode degradation.<br/>Efforts were done to optimise the synthesis of Sn<sub>0.9</sub>In<sub>0.1</sub>P<sub>2</sub>O<sub>7</sub> in order to establish a reproducible synthesis procedure. The synthesis used in this work required two heat treatment steps. Fourier transform infrared spectroscopy (FT-IR) shows an O-H band in the IR spectrum from 1500 cm<sup>-1</sup> to 3800 cm<sup>-1</sup> strongly dependent on the first heat treatment step of the synthesis. It was found that initial heating of the synthesis precursors to 270 _C gave a high quality sample in a reproducible fashion.<br/>Investigations of two additional novel phosphates was attempted. These were phosphoric acid treated Nb<sub>5</sub>P<sub>7</sub>O<sub>30</sub> and a mixture of Bi<sub>2</sub>P<sub>4</sub>O<sub>13</sub>, BiPO<sub>4</sub> and 2 wt.% Polybenzimidazole (PBI). Both were found to be lacking in stability.As a cent...