People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Song, Jia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Selective Lead Extraction from Zinc Calcine and Zinc Leaching Residue by Leaching with Monoethanolamine Solvent Systemscitations
- 2020Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3)citations
- 2019Structure, electrical conductivity and oxygen transport properties of perovskite-type oxides CaMn1−x−yTixFeyO3−δcitations
- 2016Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites
Places of action
Organizations | Location | People |
---|
conferencepaper
Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites
Abstract
Perovskites within the (La,Sr)(Fe,Co)O3 class of materials show variations in the oxygen stoichiometry depending on temperature and oxygen activity and can potentially be used as catalysts, electrodes in high-temperature solid oxide fuel cells, gas sensors or for oxygen transport membranes. These perovskites possess a mixed ionic and electronic conductivity (MIEC), which can be highly beneficial for the processes on oxygen electrode surfaces. The oxygen transport through a MIEC is determined by the rate of the oxygen exchange over the gas-solid interface and the diffusivity of oxide ions and electrons (or holes) in the bulk. The oxygen exchange process over the surface in general involves several reaction steps, O2 adsorption, dissociation, charge transfer and incorporation of ionic species. The Co-free end member of the material class; LSF (e.g. (La0.6Sr0.4FeO3-δ) is fairly low cost and chemically stable in both mildly reducing and oxidizing atmosphere. The electronic conductivity is excellent (283 S/cm at 800 °C) but the ionic conductivity especially at low temperature is limited (0.014 S/cm, 800 °C). Due to these properties the material is a candidate for use in composite membranes in combination with a better ionic conducting material like CGO. Such systems are also excellent model systems for fundamental studies of the oxygen exchange process