People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zielke, Philipp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2019Investigation of electrophoretic deposition as a method for coating complex shaped steel parts in solid oxide cell stackscitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printingcitations
- 2018A Ba-free sealing glass with a high CTE and excellent interface stability optimized for SOFC/SOEC stack applicationscitations
- 2018A Ba-free sealing glass with a high CTE and excellent interface stability optimized for SOFC/SOEC stack applicationscitations
- 2018Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Development of high temperature mechanical rig for characterizing the viscoplastic properties of alloys used in solid oxide cellscitations
- 2017A Novel SOFC/SOEC Sealing Glass with a Low SiO2 Content and a High Thermal Expansion Coefficient
- 2017Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unitcitations
- 2017A Novel SOFC/SOEC Sealing Glass with a Low SiO2 Content and a High Thermal Expansion Coefficientcitations
- 2017A Novel SOFC/SOEC Sealing Glass with a Low SiO 2 Content and a High Thermal Expansion Coefficientcitations
- 2016Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor
Places of action
Organizations | Location | People |
---|
conferencepaper
Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor
Abstract
The increasing amount of fluctuating electricity generation from renewable sources requires a flexible energy system and storage technologies to ensure that energy services can be covered in a stable and affordable manner. In order to become truly independent from fossil fuels, increasing the performance of energy storage and conversion devices such as fuel cells, electrolyzers and batteries is important. One promising approach to further improve these devices is the use of carefully structured nanosized materials. Nano-composite particles combining different materials in advanced geometries like core-shell structures or surface decorated particles could exhibit better performance compared with single phase materials. To obtain such advanced structures is the aim of the ProEco project (www.proeco.dk). In this project, a two-stage continuous reactor is built and used to synthesize such nano-composites. Here we report on the design of the two-stage continuous hydrothermal flow synthesis reactor and first results on obtaining structured nano-composite consisting of yttria-stabilized zirconia (YSZ) and NiO materials. These materials are commonly applied in the fuel electrodes of today’s state-of-the-art solid oxide fuel and electrolysis cells. The prepared particles were characterized by X-ray powder diffraction, (high resolution) transmission electron microscopy, scanning tunnel transmission microscopy and Raman spectroscopy in order to determine crystal structure, particle size, surface morphology and element distribution.