People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manos, George C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Preliminary design of seismically isolated R/C highway overpasses- Features of relevant software and experimental testing of elastomeric bearings
Abstract
<p>The preliminary design of seismically isolated R/C highway overpasses is the tar-get of a software based on the current design provisions of Eurocode 8 (Part 2) as well as on engineering decisions included in the expert system. The features of this expert system, which is aimed to facilitate the design of a highway overpass by isolating its deck with the inclusion of elastomeric bearings, are presented and discussed. For such an upgrade scheme a number of successive checks is necessary in order to select an optimum geometry of the bearings. The developed software includes a series of checks provided by Eurocode 8 (Part 2), in order to ensure the satisfactory seismic performance of the selected upgrade scheme. In doing so, the software accesses a specially created database of the geometrical and mechanical character-istics of either cylindrical or prismatic elastometallic bearings which are commercially avail-able; this database can be easily enriched by relevant data from laboratory tests on isolation devices. The basic assumptions included in the software are (a) modeling the seismic re-sponse of the bridge overpass as a SDOF system, and (b) only the longitudinal direction re-sponse is considered; it is common practice for seismically isolated bridge systems to restrain the transverse movement of the deck by stoppers. Moreover, the results form a number of tests performed in the Laboratory of Strength of Materials and Structures of Aristotle Univer-sity, verified the quality of the production process of a local producer of elastomeric bearings subjecting production samples to the sequence of tests specified by International Standard ISO 22762-1 (2005). Strain amplitudes larger than 250% resulted in the debonding of the elastomer from the steel plating. Artificial aging resulted in a small increase of the axial (ver-tical) stiffness and a small decrease of the shear (horizontal) stiffness of the tested bearings. More specimens must be tested to validate further these findings.</p>