Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pierce, Gareth

  • Google
  • 2
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2009A Method for Acoustic Emission Source Identification based on Optimisationcitations
  • 2008Force characterisation of a laser impulse using differential evolution with a local interaction simulation algorithmcitations

Places of action

Chart of shared publication
Worden, Keith
2 / 6 shared
Surace, C.
1 / 6 shared
Ouyang, H.
1 / 4 shared
Chu, F.
1 / 5 shared
Gariladi, L.
1 / 2 shared
Jiang, D.
1 / 12 shared
Ostachowicz, Wm
1 / 2 shared
Silberschmidt, Vadim V.
1 / 524 shared
Spencer, Andrew
2 / 2 shared
Chetwynd, Daley
1 / 1 shared
Hensman, James
1 / 4 shared
Staszewski, Wieslaw
1 / 2 shared
Chart of publication period
2009
2008

Co-Authors (by relevance)

  • Worden, Keith
  • Surace, C.
  • Ouyang, H.
  • Chu, F.
  • Gariladi, L.
  • Jiang, D.
  • Ostachowicz, Wm
  • Silberschmidt, Vadim V.
  • Spencer, Andrew
  • Chetwynd, Daley
  • Hensman, James
  • Staszewski, Wieslaw
OrganizationsLocationPeople

document

Force characterisation of a laser impulse using differential evolution with a local interaction simulation algorithm

  • Chetwynd, Daley
  • Pierce, Gareth
  • Worden, Keith
  • Hensman, James
  • Spencer, Andrew
  • Staszewski, Wieslaw
Abstract

<p>One approach to health monitoring of plate-like sections of structures is to look for changes in the way ultrasonic waves propagate through metal and composite panels when damaged. Waves travelling through thin plate-like structures are affected by reflections at the surfaces giving rise to Lamb waves which are highly dispersive. To simulate such waves, a Local Interaction Simulation Approach (LISA) algorithm has been implemented and this paper deals with the validation of this code for wave propagation in undamaged aluminium plates. In order to minimise unknown factors, experiments are carried out using a high power laser pulse for actuation and a laser vibrometer for sensing. However, the forces imparted by the ablative and heating effects of the laser pulse are still unknown. Differential Evolution (DE) is used to find the optimal profile of forcing to match the simulation with experiment. The accuracy of the simulation method is then verified by comparing the predicted and experimental results for tests using a similar laser pulse but with displacement measured at a different distance or with a different plate thickness.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • simulation
  • aluminium
  • composite
  • ultrasonic