People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engelbrecht, Kurt
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Additive manufactured thermoplastic elastomers for low-stress driven elastocaloric coolingcitations
- 2022Performance analysis of a high-efficiency multi-bed active magnetic regenerator devicecitations
- 2021Performance analysis of a high-efficiency multi-bed active magnetic regenerator devicecitations
- 2020Tracking the dynamics of power sources and sinks during the martensitic transformation of a Cu-Al-Ni single crystalcitations
- 2018Investment casting and experimental testing of heat sinks designed by topology optimizationcitations
- 2015Elastocaloric cooling device: Materials and modeling
- 2012Development and Experimental Results from a 1 kW Prototype AMR
- 2011A monolithic perovskite structure for use as a magnetic regeneratorcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Elastocaloric cooling device: Materials and modeling
Abstract
In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application of a magnetic field). However, the possibility of inducing a thermodynamic transition by means of mechanical stress (martensitic transformation), i.e. the elastocaloric effect in superelastic materials, opens up new routes for solid-state refrigeration. In the recent years a large elastocaloric effect was demonstrated in Ni-Ti-based, Cu-based as well as Fe-based shape memory alloys. Although these studies showed a great potential of the elastocaloric effect, there has not yet been much activities on development of elastocaloric cooling devices. Some ideas on elastocaloric cooling device have already been presented, but there is still a lack of knowledge and information about its actual cooling potential.