People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hall, Stephen
Science and Technology Facilities Council
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023In situ biaxial loading and multi-scale deformation measurements of nanostructured materials at the CoSAXS beamline at MAX IV Laboratorycitations
- 2023Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applicationscitations
- 2023Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applicationscitations
- 2022Revealing Precipitate Development During Hot Rolling and Cooling of a Ti–Nb Micro-Alloyed High Strength Low-Alloy Steel through X-Ray Scatteringcitations
- 2022Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulationcitations
- 2022Impact of Compression on the Electrochemical Performance of the Sulfur/Carbon Composite Electrode in Lithium-Sulfur Batteriescitations
- 2022Impact of compression on the electrochemical performance of the sulfur/carbon composite electrode in lithium–sulfur batteriescitations
- 2022Impact of compression on the electrochemical performance of the sulfur/carbon composite electrode in lithium–sulfur batteriescitations
- 20213D X‐Ray Diffraction Characterization of Grain Growth and Recrystallization in Rolled Braze Clad Aluminum Sheetcitations
- 2021Tubular supramolecular alternating copolymers fabricated by cyclic peptide–polymer conjugatescitations
- 2020In situ analysis of cast irons mechanical behaviour using synchrotron x-ray tomography and 3DXRDcitations
- 2019Advantages of architectured harmonic structure in structural performancecitations
- 2018Evidence of 3D strain gradients associated with tin whisker growthcitations
- 2018Multi-scale in-situ experiments as basis for continuum modelling of polymers
- 2016Coupled diffusion-deformation multiphase field model for elastoplastic materials applied to the growth of Cu6Sn5citations
- 2014Precipitate evolution in the early stages of ageing in Inconel 718 investigated using small-angle x-ray scatteringcitations
- 2014Multi-scale Measurement of (Amorphous) Polymer Deformation: Simultaneous X-ray Scattering, Digital Image Correlation and In-situ Loadingcitations
- 2013Live volumetric imaging (LVI) intracardiac ultrasound cathetercitations
- 2008Ultrasonic tomography to study localised deformation in sandstone
Places of action
Organizations | Location | People |
---|
document
Ultrasonic tomography to study localised deformation in sandstone
Abstract
Full-field measurements are essential in the study of the behaviour of heterogeneous materials or phenomena. In particular the development of localised deformation cannot be fully studied using standard techniques, where measurements of loads and displacements are only made at the boundaries, as such measures will only be nominal or conventional after localisation (after Desrues & Viggiani, 2004). Thus displacement field measurements have been developed both in 2D (e.g., stereophotogrammetry, digital image correlation using photographs) and 3D (volumetric digital image correlation using x-ray tomography images) to characterise localised deformation. However such approaches, whilst providing a powerful tool to characterise localised phenomena, can only provide data on the kinematics and not on associated property changes (e.g., elastic properties), which are to be expected, e.g., due to compaction and related porosity reduction or grain crushing. We have shown previously (Hall et al., 2005) how ultrasonic tomography might be used for full-field measurement of the ultrasonic velocities, and thus elastic properties, in laboratory specimens of geomaterials. Ultrasonic tomography is an inverse method that involves measurements of the times for propagation of an ultrasonic signal (travel-times) between pairs of emitting and receiving transducers. The combination of many such measurements, for a set of intersecting ‘ray-paths’ between emitting and receiving transducers placed in different positions over the sample, allows, by inversion, a map of the variations in propagation velocity in the sample to be determined, in a least-squares sense. Ultrasonic velocities are a function of the elastic properties and density of the material, therefore ultrasonic tomography provides access to the spatial variations of the elastic property in a test sample. Combining such analysis with strain fields, e.g., from digital image correlation of photographs or x-ray tomography, could allow improved understanding of the link between strain and elastic property evolution to advance constitutive models. In this work we present new ultrasonic tomography results acquired using two arrays of 64 transducer elements providing data over 64x64 intersecting raypaths, which provides unprecedented (for geomaterials) ultrasonic tomography resolution. This analysis has been carried out for a set of sandstone specimens after triaxial compression tests under a range of different confining pressures. The specimens are cylinders with two opposing flattened faces to provide contact surfaces for the ultrasonic transducer arrays. Notches were made in these flattened faces to enforce the expected shear bands to develop in the middle of the sample and in the direction perpendicular to the velocity measurements. Initial results indicate the resolution of the localised shear-bands as zones of reduced velocity, which is likely associated with crack formation and grain crushing since the deformation is largely compactant.