People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norrman, Kion
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2019Diluted Oxide Interfaces with Tunable Ground Statescitations
- 2018Oxygen Exchange and Transport in (La0.6Sr0.4)0.98FeO3-d – Ce0.9Gd0.1O1.95 Dual-Phase Compositescitations
- 2018High-temperature thermoelectric properties of Na- and W-Doped Ca3Co4O9 system citations
- 2018Oxygen Exchange and Transport in (La 0.6 Sr 0.4 ) 0.98 FeO 3-d – Ce 0.9 Gd 0.1 O 1.95 Dual-Phase Compositescitations
- 2017Mid-IR optical properties of silicon doped InPcitations
- 2017Dynamic and Impure Perovskite Structured Metal Oxide Surfacescitations
- 2016New Hypothesis for SOFC Ceramic Oxygen Electrode Mechanismscitations
- 2016In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substratescitations
- 2016In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substratescitations
- 2015Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS
- 2015Dynamic behavior of impurities and native components in model LSM microelectrodes on YSZcitations
- 2014TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operationcitations
- 2014TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2013Oxygen Electrode Kinetics and Surface Composition of Dense (La0.75Sr0.25)0.95MnO3 on YSZcitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013Oxygen Electrode Kinetics and Surface Composition of Dense (La 0.75 Sr 0.25 ) 0.95 MnO 3 on YSZcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices - the ISOS-3 inter-laboratory collaborationcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices - the ISOS-3 inter-laboratory collaborationcitations
- 2012Stability of Polymer Solar Cellscitations
- 2012Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cellscitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices–the ISOS-3 inter-laboratory collaborationcitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2012Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from watercitations
- 2012Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from watercitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effectcitations
- 2011Water and oxygen induced degradation of small molecule organic solar cellscitations
- 2010Using Light-Induced Thermocleavage in a Roll-to-Roll Process for Polymer Solar Cellscitations
- 2010Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cellcitations
- 2010Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cellcitations
- 2010Stability and Degradation of Polymer Solar cells
- 2009Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labelingcitations
- 2008Effects of trace elements at the Ni/ScYSZ interface in a model solid oxide fuel cell anodecitations
- 2007Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testingcitations
- 2006Lifetimes of organic photovoltaics: Design and synthesis of single oligomer molecules in order to study chemical degradation mechanismscitations
- 2006Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cellscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS
Abstract
For decades strontium doped lanthanum manganite (LSM) electrodes have been the material of choice for cathodes in high temperature solid oxide fuel cells (SOFCs). LSM has relatively high electrical conductivity at high temperatures and has mechanical properties that are well matched to yttria stabilized zirconia (YSZ), a common electrolyte material. Recently, LSM electrodes have been employed in lower temperature (300-500 °C) electrochemical gas purification applications. Several studies have attributed the electrochemical activation of LSM electrodes to changes in the surface stoichiometry under an applied potential.1-3 The presented work explores the polarisation induced changes in LSM electrode composition by utilizing in operando Raman spectroscopy and post mortem ToF-SIMS depth profiling on LSM thin film model electrodes fabricated by pulsed laser deposition on YSZ substrates with a thin (200 nm) CGO barrier layer. Experiments were conducted on cells with 200 nm thick (La0.85Sr0.15)0.9MnO3±δ electrodes in 10% O2 at 500°C and 700°C under various electrical polarisations (-0.5V, ±1V and -2.5V). Raman spectra recorded continuously during polarisation showed evidence of shifts in band intensities that were both reversible and dependent on the direction of the applied potential (Figure 1). The spectral changes were assigned to changes in the LSM electronic structure and specifically to changes in the relative oxide concentration in LSM’s near surface region. Ex situ ToF-SIMS depth profiles were recorded through the LSM thin film electrodes and revealed distinct compositional changes throughout the electrodes (Figure 2). The electrode elements and impurities separated into distinct layers that were more pronounced for the stronger applied polarisations. The mechanism behind this separation into “layers” in the LSM electrode poses interesting questions about mass transfer and ion migration in conducting materials subject to electrical polarisation. Figure 1. Representative Raman spectra collected on an LSM electrode at 700 °C with the cell open at circuit voltage (OCV) and polarised at (a) -1 V and (b) +1 V. The peaks at 440 and 600 cm-1 are signatures from the CGO and YSZ electrolyte, respectively. Figure 2. ToF-SIMS depth profile of LSM electrode polarised at -1V at 700 °C for 2 h. Stapled lines mark layers enriched in different species. References 1 M. Backhaus-Ricoult, K. Adib, T. St.Clair, B. Luerssen, L. Gregoratti and A. Barinov, Solid State Ionics, 2008, 179, 891. 2 M. A. Haider and S. McIntosh, J. Electrochem. Soc., 2009, 156, B1369. 3 S. P. Jiang and J. G. Love, Solid State Ionics, 2003, 158, 45. [Figure]