People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oberndorfer, Markus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environmentscitations
- 2019Hydrogen Uptake of Duplex 2205 at H2 partial pressures up to 100 bar
- 2019Susceptibility of Selected Steel Grades to Hydrogen Embrittlement - Simulating Field Conditions by Performing Laboratory Wheel Tests With Autoclaves
- 2008Influence of impact angles on penetration rates of CRAs exposed to a high velocity multiphase flow
Places of action
Organizations | Location | People |
---|
document
Influence of impact angles on penetration rates of CRAs exposed to a high velocity multiphase flow
Abstract
A combined flow loop - jet impingement pilot plant has been used to determine mass loss rates in a mixed gas - saltwater - sand multiphase flow at impact velocities up to 70 m/s. Artificial brine with a salt content of 27 g/1 was used as liquid phase. Sand content, with grain size below 150 µ, was 2.7 g/l brine. CO at a pressure of 15 bar was used as gas phase. The impact angle between jet stream (nozzle) and sample surface was varied between 30 and 90°. Rectangular stainless steel disc samples with a size of 20 × 15 × 5 mm were used. They were mechanically ground and polished prior to testing. Damaged surfaces of specimens exposed to the high velocity multiphase flow were investigated by stereo microscopy, scanning electron microscopy (SEM) and an optical device for 3D surface measurements. Furthermore, samples were investigated by applying atomic force microscopy (AFM), magnetic force microscopy (MFM) and nanoindentation. Influence of impact velocity and impact angle on penetration rates (mass loss rates) of two CRAs (UNS S30400 and N08028) are presented. Moreover effects of chemical composition and mechanical properties are critically discussed.