Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rodriguez, Carlos Garza

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Advances in the deep hole drilling technique for the residual stress measurement in composite laminatescitations
  • 2015Measurement of in-plane residual stresses in an AS4/8552 composite laminate using the deep-hole drilling methodcitations

Places of action

Chart of shared publication
Smith, David
2 / 20 shared
Pavier, Mj
2 / 29 shared
Shterenlikht, Anton
2 / 23 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Smith, David
  • Pavier, Mj
  • Shterenlikht, Anton
OrganizationsLocationPeople

document

Measurement of in-plane residual stresses in an AS4/8552 composite laminate using the deep-hole drilling method

  • Smith, David
  • Rodriguez, Carlos Garza
  • Pavier, Mj
  • Shterenlikht, Anton
Abstract

<p>The deep-hole drilling (DHD) method is a residual stress measuring technique commonly used in isotropic materials. This paper provides an investigation into using DHD to determine residual stress fields in orthotropic laminated composite materials. In this method, a reference hole with a small diameter is drilled through a component that has residual stresses. The diameter of the hole is carefully measured using an air probe as a function of depth and angular position inside the hole. The residual stresses are then released by trepanning a core of larger diameter from around the hole. The diameter of the hole is afterwards re-measured at the same angular positions and depths as in the original measurements. Changes in the shape of the hole are related to the residual stresses that were present before the hole was drilled. For orthotropic materials, the calculation of residual stresses requires the evaluation of distortion coefficients which rely on the mechanical properties of the components. In this work, the finite element method is used to determine these coefficients. Using this technique, the in-plane residual stresses in an AS4/8552 composite laminate are experimentally measured and compared to finite element predictions as well as to classical lamination theory. It was determined that when using DHD in laminated materials the ratio between the thickness of the layers and the reference hole and trepan diameter needs to be sufficiently high, otherwise remaining interlaminar shear stresses in the trepanned core leads to inaccurate measurements.</p>

Topics
  • impedance spectroscopy
  • theory
  • composite
  • isotropic