People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirkelund, Gunvor Marie
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood – A review for climate mitigation modelingcitations
- 2022Influence of ash type and mixing methods on workability and compressive strength when using Greenlandic MSWI fly ash as cement replacement in mortar
- 2022Effects of Chlorides and Sulphates on Heavy Metal Leaching from Mortar with Raw and Electrodialytically Treated MSWI Fly Ashcitations
- 2021Impact of electrodialytic remediation of MSWI fly ash on hydration and mechanical properties of blends with Portland cementcitations
- 2020Screening of untreated municipal solid waste incineration fly ash for use in cement-based materials: chemical and physical propertiescitations
- 2019Characterization of sewage sludge ash and its effect on moisture physics of mortarcitations
- 2019Electrodialytically treated MSWI fly ash use in clay bricks
- 2019Screening Untreated Municipal Solid Waste Incineration Fly Ash for Use in Cement-Based Materials – Chemical and Physical Properties
- 2018Using polycarbobetaines for cu recovery from catholytes generated by electrodialytic treatment of sewage sludge ash
- 2017Colour, compressive strength and workability of mortars with an iron rich sewage sludge ashcitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2016Replacement of 5% of OPC by fly ash and APC residues from MSWI with electrodialytic pre-treatment
- 2015Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the processcitations
- 2015Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sedimentscitations
- 2014Electrodialytically treated MSWI APC residue as substitute for cement in mortar
- 2014The Aesthetical quality of SSA-containing mortar and concrete
- 2013Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediationcitations
- 2012Electrodialytic remediation of suspended soil – Comparison of two different soil fractionscitations
- 2012Testing the possibility for reusing mswi bottom ash in Greenlandic road construction
- 2012Characterisation of MSWI bottom ash for potential use as subbase in Greenlandic road construction
- 2009Electrodialytic remediation of harbour sediment in suspension - Evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pHcitations
- 2007Electrodialytic extraction of Cd and Cu from sediment from Sisimiut Harbour, Greenlandcitations
- 2005Acidification of Harbour sediment and removal of heavy metals induced by water splitting in electrodialytic remediation.citations
Places of action
Organizations | Location | People |
---|
document
The Aesthetical quality of SSA-containing mortar and concrete
Abstract
SSA (sewage sludge ash) is resulting ash from the combustion of sewage sludge, and is a method employed at some water treatment plants in order to decrease volume and hygenize the sludge. Today, SSA is with a few exceptions landfilled. As cement production is responsible for app. 5 % of the total global CO2 emission, the advantage of replacing cement with a secondary resource as SSA is obvious. The focus of previous conducted research has mainly been on the chemical, mechanical properties and environmental consequences attached to the use of SSA in construction materials.(Cyr et al., 2007) Thus, this present study has focused on both the aesthetical and technical aspects of using SSA as a supplementary cementitious material. The SSA, which was tested, was taken from the wastewater treatment plant Avedøre Spildevandscenter, Biofos sited in the Copenhagen area. This ash had a high content of Fe that gives a characteristic red colour. The process of grinding SSA has shown to improve the compressive strength of SSA- containing mortar (Donatello et al. 2010). Thus, in this study SSA was grinded in 6 different intervals ranging from 0 – 10 min, and then added to the mortar mix replacing 20% of cement. The experiment revealed that the colour of the SSA-containing mortar intensified as the time interval of the grinding process increased. Each of the 6 steps within the time interval provided an additional colour tone and generated a colour scale consisting of mortar samples ranging from greyish to a more saturated red brown colour. SSA shows potential for colouring concrete, and if the aesthetical aspects such as colour are taken into account at an early