People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branner, Kim
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Monitoring Damage Progression in Wind Turbine Blade Under Fatigue Testing Using Acceleration Measurements
- 2024Monitoring Damage Progression in Wind Turbine Blade Under Fatigue Testing Using Acceleration Measurements
- 2021Optimized method for multi-axial fatigue testing of wind turbine bladescitations
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2019Understanding progressive failure mechanisms of a wind turbine blade trailing edge section through subcomponent tests and nonlinear FE analysiscitations
- 2018Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminatescitations
- 2018Buckling and progressive failure of trailing edge subcomponent of wind turbine blade
- 2016Methodology for testing subcomponents; background and motivation for subcomponent testing of wind turbine rotor blades
- 2015New morphing blade section designs and structural solutions for smart blades
- 2015Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure
- 2015Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools
- 2014Advanced topics on rotor blade full-scale structural fatigue testing and requirements
- 2014An high order Mixed Interpolation Tensorial Components (MITC) shell element approach for modeling the buckling behavior of delaminated compositescitations
- 2014Strain and displacement controls by fibre bragg grating and digital image correlationcitations
- 2014Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures
- 2013Calibration of a finite element composite delamination model by experiments
- 2012Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate
- 2012Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate
- 2011Finite elements modeling of delaminations in composite laminates
- 2011Compressive strength of thick composite panels
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Buckling Strength of Thick Composite Panels in Wind Turbine Blades
- 2008Buckling Strength of Thick Composite Panels in Wind Turbine Blades
- 2008Full Scale Test of a SSP 34m boxgirder 2
Places of action
Organizations | Location | People |
---|
document
Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure
Abstract
Modern wind turbine rotor blades are normally assembled from large parts bonded together by adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, where sandwich core materials as well as fibre composites are used. For most of the modern wind turbine blades the aerodynamically formed outer shell structure is manufactured as an upper and a lower part in separate moulds in order to simplify the production process. The aerodynamic shell structures are then bonded to internal load bearing structures during the production process. Adhesive joints exist where the load bearing structure is connected to the shells and at the joints of the upper and lower shells, usually at the leading and trailing edges. Maintenance inspections of wind turbines show that cracks in the vicinity of the trailing edge are typically occurring forms of damage. The cause of trailing edge failure is very complex and can arise from manufacturing flaws, damages during transportation and erection as well as under general and extreme operational conditions.<br/>The focus in this study is put on the geometrical nonlinear buckling effect of the trailing edge under combined loading and how it affects the ultimate strength of a holistic blade. For this reason a 34m long blade was studied experimentally and numerically under ultimate load until blade collapse. The interaction between trailing edge buckling on damage onset and sandwich panel failure was studied in detail. Numerically applied fracture mechanics approaches showed good agreement with the experimental results and helped to understand the relations between trailing edge buckling and blade collapse.