People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Pernille Erland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Oxidation of sulfides from secondary materials in cementitious binders as a function of environmental conditions
- 2024Electrodialytic extraction of copper, lead and zinc from sulfide mine tailings:Optimization of current density and operation time
- 2021Screening for key material parameters affecting early-age and mechanical properties of blended cementitious binders with mine tailingscitations
- 2019Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristicscitations
- 2017The influence of sediment properties and experimental variables on the efficiency of electrodialytic removal of metals from sedimentcitations
- 2016Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediationcitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2016Replacement of 5% of OPC by fly ash and APC residues from MSWI with electrodialytic pre-treatment
- 2015Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sedimentscitations
- 2015Screening of variable importance for optimizing electrodialytic remediation of heavy metals from polluted harbour sedimentscitations
- 2015Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sedimentscitations
- 2014Electrodialytically treated MSWI APC residue as substitute for cement in mortar
- 2013Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediationcitations
- 2012Electrodialytic remediation of suspended soil – Comparison of two different soil fractionscitations
- 2007Electrodialytic extraction of Cd and Cu from sediment from Sisimiut Harbour, Greenlandcitations
Places of action
Organizations | Location | People |
---|
article
Electrodialytically treated MSWI APC residue as substitute for cement in mortar
Abstract
Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and/or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar and comparable to both the reference mortar and mortar with coal fly ash. These results indicate that electrodialytic remediation could be used a pre-treatment method for MSWI APC residues prior to reuse in mortar.