People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duchstein, Linus Daniel Leonhard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Microstructure and hardness development in a copper-nickel diffusion gradient model system
- 2014In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solutioncitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2012Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalystscitations
- 2011In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis
- 2011Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope
- 2011Quantitative investigation of precipitate growth during ageing of Al-(Mg,Si) alloys by energy-filtered electron diffraction
Places of action
Organizations | Location | People |
---|
conferencepaper
In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis
Abstract
In an energy system based around decentralized hydrogen production, methanol synthesis under lower pressure conditions could be a way to store hydrogen on location. In the search of catalysts that might open up new process, conditions studies based on density functional theory (DFT) calculations have predicted a nickel gallium alloy to be active for this reaction [1]. NiGa catalysts prepared by incipient wetness impregnation on a high surface area silica support (Saint-Gobain NorPro), using a solution of nickel and gallium nitrates have shown very promising results [2]. This work presents detailed Environmental Transmission Electron Microscope (ETEM) investigations of synthesis of NiGa nanoparticles on a thin film support. Samples were prepared by dissolving Ni(NO3)2 and Ga(NO3)3 in a Ni:Ga ratio of 5:3 in millipore water. The solution was subsequently dispersed on transmission electron microscope (TEM) sample grids. The sample grid was then mounted in a TEM heating holder and inserted in a FEI Titan ETEM with imaging Cs corrector as well as facilities for in situ gas reactions [3]. The ETEM was operated at 300 kV. The synthesis was performed in situ in a H2 flow of 2 Nml/min at a pressure of 130 Pa. The reaction was investigated from room temperature (RT) to 660°C by subsequently obtaining bright field TEM images, diffraction patterns (DP), High Resolution TEM (HRTEM) images, and Electron Energy Loss Spectroscopy (EELS) data. Figure 1 shows bright field images of the sample during synthesis. The dispersed nitrate salts (A) starts to decompose around 300°C (B). From 400°C to 660°C (C) NiGa nanoparticles are formed. The particle diameter at 660C was between 5 nm and 20 nm. From HRTEM and DP it is observed that the nanoparticles are crystalline. Figure 2(A) shows a particle at 660°C with two overlapping crystal domains. The insets show the fast fourier transform (FFT) of the overlapping crystals (FFT1) and single crystal area (FFT2), respectively. The FFT2 resembles the orthorhombic Ni5Ga3 viewed along the [1 1 ...