People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Jakob Skov
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2017Considerations on the Construction of a Powder Bed Fusion Platform for Additive Manufacturingcitations
- 2013In-process 3D geometry reconstruction of objects produced by direct light projectioncitations
- 2010In-line monitoring and reverse 3D model reconstruction in additive manufacturing
- 2008PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION
Places of action
Organizations | Location | People |
---|
document
In-line monitoring and reverse 3D model reconstruction in additive manufacturing
Abstract
Additive manufacturing allows for close-to unrestrained geometrical freedom in part design. The ability to manufacture geometries of such complexity is however limited by the fact that it proves difficult to verify tolerances of these parts. Tolerancs of featuress that are inaccessible with traditional measuring equipment such as Coordinate Measurement Machines (CMM's) can not easily be verified. This paradox is addresses by the proposal of an in-line reverse engineering and 3D reconstruction method that alows for a true to scale reconstruction of a part that is being additivelymanufactures on 3D printing (3DP), or Selective Laser Sintering (SLS) equipment. The system will be implemented and tested on a 3DP machine with modifications developed at the author's university.