People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norby, Poul
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2023Thin film and bulk morphology of PI-PS-PMMA miktoarm star terpolymers with both weakly and strongly segregated arm pairs
- 2023Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cellscitations
- 2019Electrochemical stability of (La,Sr)CoO3-δ in (La,Sr)CoO3-δ/(Ce, Gd)O2-δ heterostructurescitations
- 2019Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodescitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2019Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2018Intercalation of lithium into disordered graphite in a working batterycitations
- 2018Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceriacitations
- 2017Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unitcitations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Comprehensive analysis of TEM methods for LiFePO 4 /FePO 4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM)citations
- 2016In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxidecitations
- 2016Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM)citations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO 4 /C electrodescitations
- 2016Nanocomposite YSZ-NiO Particles with Tailored Structure Synthesized in a Two-Stage Continuous Hydrothermal Flow Reactor
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Size of oxide vacancies in fluorite and perovskite structured oxidescitations
- 2015In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries
- 2015Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studiescitations
- 2014Ionic conductivity and the formation of cubic CaH 2 in the LiBH 4 -Ca(BH 4 ) 2 compositecitations
- 2014Degradation Studies on LiFePO 4 cathode
- 2014Ionic conductivity and the formation of cubic CaH2 in the LiBH4-Ca(BH4)2 compositecitations
- 2014Degradation Studies on LiFePO4 cathode
- 2014In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell
- 2014Temperature- and Pressure-Induced Changes in the Crystal Structure of Sr(NH3)8Cl2citations
- 2013Structure and Magnetic Properties of Cu 3 Ni 2 SbO 6 and Cu 3 Co 2 SbO 6 Delafossites with Honeycomb Latticescitations
- 2013Structure and Magnetic Properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with Honeycomb Latticescitations
- 2013Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphitecitations
- 2012Subsolidus phase relations of the SrO–WO3–CuO system at 800 °C in aircitations
- 2012Subsolidus phase relations of the SrO–WO 3 –CuO system at 800 °C in aircitations
- 2010Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction studycitations
- 2009A Structural Study of Stacking Disorder in the Decomposition Oxide of MgAl Layered Double Hydroxide: A DIFFaX plus Analysiscitations
- 2009Conductivity and water uptake of Sr-4(Sr2Nb2)O-11 center dot nH(2)O and Sr-4(Sr2Ta2)O-11 center dot nH(2)Ocitations
- 2009Temperature dependant X-ray diffraction study of PrSr3Co1.5Fe1.5O10-d; n=3 Ruddlesden-Popper phasecitations
Places of action
Organizations | Location | People |
---|
document
Degradation Studies on LiFePO4 cathode
Abstract
Lithium-ion batteries are a promising technology for automotive application, but limited performance and lifetime is still a big issue. The aim of this work is to study and address degradation processes which affect LiFePO4 (LFP) cathodes - one of the most common cathodes in commercial Li-ion batteries. In order to evaluate how the LFP cathode is affected by C-rate a LFP working electrode, Lithium metal foil counter electrode and Lithium metal reference electrode was tested in a 3-electrode setup with a standard 1M LiPF6 in 1:1 EC/DMC electrolyte and glass fiber separator. The working electrode/counter electrode was subjected to several charge/discharge cycles between 3.0 V and 4.0 V at different discharge rates. Figure 1 shows the voltage profile of the LFP electrode (solid line) and full battery (dotted line) during charge/discharge process. It is seen that the higher the C-rate, the higher is the polarization furnished by the counter electrode which reduces the capacity. In Figure 2, the discharge capacity [mAh/g] is plotted vs the number of charge/discharge cycles. Series of 10 cycles at a given C-rate was applied to the battery. Each series was followed by a C/10 cycle (green points). A linear fit has been applied to the first series (omitting first two cycles where instability of the system is observed), in order to calculate the degradation rates. High C-rates are seen to affect the discharge capacity, but the capacity is almost completely recovered (green points) and only a limited degradation occurs. Impedance spectroscopy has been also applied to investigate the LFP cathode degradation. Figure 3 shows the imaginary part of the impedance measured at 50% State-of-Charge after each series of cycles. The relative increase in the impedance arc around 1 KHz (assumed to be associated with charge transfer resistance at the LFP particle surfaces) is seen to gradually decrease with increasing number of series. This indicates that more cycles per series is needed to establish a convincing relation between C-rate and degradation. The degradation studies will be coupled with FIB/SEM analysis in order to observe changes in the pore structure or micro cracks that would affect electronic percolation. Figure 4 displays an example of a fresh LFP cathode after FIB cutting. White particles are LFP grains while the black area contains carbon particles and pores, which are difficult to distinguish from each other. Substitution of the epoxy resin with a silicon resin increases the contrast between pores and carbon particles [1] and this will be used in the forthcoming FIB/SEM analysis. References [1] M. Ender et al, Journal of The Electrochemical Society, 159 (7) A972-A980 (2012) [Formula]