People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Peter Stanley
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO 4 /Graphite 26650 Cylindrical Cellcitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO4/Graphite 26650 Cylindrical Cellcitations
- 2017Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurriescitations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Relaxation of stresses during reduction of anode supported SOFCs
- 2015Dictionary Based Segmentation in Volumescitations
- 2015Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructurescitations
- 2014Degradation Studies on LiFePO 4 cathode
- 2014On the accuracy of triple phase boundary lengths calculated from tomographic image datacitations
- 2014Degradation Studies on LiFePO4 cathode
- 2014In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopycitations
- 2014Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
Places of action
Organizations | Location | People |
---|
document
Degradation Studies on LiFePO4 cathode
Abstract
Lithium-ion batteries are a promising technology for automotive application, but limited performance and lifetime is still a big issue. The aim of this work is to study and address degradation processes which affect LiFePO4 (LFP) cathodes - one of the most common cathodes in commercial Li-ion batteries. In order to evaluate how the LFP cathode is affected by C-rate a LFP working electrode, Lithium metal foil counter electrode and Lithium metal reference electrode was tested in a 3-electrode setup with a standard 1M LiPF6 in 1:1 EC/DMC electrolyte and glass fiber separator. The working electrode/counter electrode was subjected to several charge/discharge cycles between 3.0 V and 4.0 V at different discharge rates. Figure 1 shows the voltage profile of the LFP electrode (solid line) and full battery (dotted line) during charge/discharge process. It is seen that the higher the C-rate, the higher is the polarization furnished by the counter electrode which reduces the capacity. In Figure 2, the discharge capacity [mAh/g] is plotted vs the number of charge/discharge cycles. Series of 10 cycles at a given C-rate was applied to the battery. Each series was followed by a C/10 cycle (green points). A linear fit has been applied to the first series (omitting first two cycles where instability of the system is observed), in order to calculate the degradation rates. High C-rates are seen to affect the discharge capacity, but the capacity is almost completely recovered (green points) and only a limited degradation occurs. Impedance spectroscopy has been also applied to investigate the LFP cathode degradation. Figure 3 shows the imaginary part of the impedance measured at 50% State-of-Charge after each series of cycles. The relative increase in the impedance arc around 1 KHz (assumed to be associated with charge transfer resistance at the LFP particle surfaces) is seen to gradually decrease with increasing number of series. This indicates that more cycles per series is needed to establish a convincing relation between C-rate and degradation. The degradation studies will be coupled with FIB/SEM analysis in order to observe changes in the pore structure or micro cracks that would affect electronic percolation. Figure 4 displays an example of a fresh LFP cathode after FIB cutting. White particles are LFP grains while the black area contains carbon particles and pores, which are difficult to distinguish from each other. Substitution of the epoxy resin with a silicon resin increases the contrast between pores and carbon particles [1] and this will be used in the forthcoming FIB/SEM analysis. References [1] M. Ender et al, Journal of The Electrochemical Society, 159 (7) A972-A980 (2012) [Formula]