Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Crewe, Adam J.

  • Google
  • 13
  • 22
  • 651

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2018Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories4citations
  • 2016Nonlinear fiber element modeling of RC bridge piers considering inelastic buckling of reinforcement104citations
  • 2016Damage propagation in corroded reinforcing bars with the effect of inelastic buckling under low-cycle fatigue loading1citations
  • 2016A multi-mechanical nonlinear fibre beam-column model for corroded columns14citations
  • 2016Shaking Table Testing of an Advanced Gas Cooled Reactor Core Model with Degraded Componentscitations
  • 2015Nonlinear behaviour of corroded RC columns under cyclic loadingcitations
  • 2015Phenomenological hysteretic model for corroded reinforcing bars including inelastic buckling and low-cycle fatigue degradation145citations
  • 2014Finite element investigation of the influence of corrosion pattern on inelastic buckling and cyclic response of corroded reinforcing barscitations
  • 2013Nonlinear cyclic response of corrosion damaged reinforcing bars with the effect of buckling115citations
  • 2013Experimental Investigation and Computational Modelling of Corrosion Induced Mechanical-Geometrical Degradation of Reinforcing Bars57citations
  • 2013Nonlinear stress-strain behaviour of corrosion-damaged reinforcing bars including inelastic buckling211citations
  • 2012Seismic Performance Evaluation of RC Bridge Piers Subject to Combined Earthquake Loading and Material Deterioration in Aggressive Environmentcitations
  • 2012Stress-Strain Response of Corroded Reinforcing Bars under Monotonic and Cyclic Loadingcitations

Places of action

Chart of shared publication
Ojaghi, Mobin
1 / 1 shared
Martínez, Ignacio Lamata
1 / 1 shared
Taylor, Colin
2 / 3 shared
Blakeborough, Anthony
1 / 1 shared
Williams, Martin
1 / 1 shared
Haigh, Stuart K.
1 / 1 shared
Madabhushi, Gopal S. P.
1 / 1 shared
Dietz, Matthew
2 / 6 shared
Alexander, Nicholas A.
11 / 15 shared
Kashani, Mohammad
3 / 6 shared
Lowes, Laura N.
6 / 7 shared
Kashani, Mohammad Mehdi
1 / 17 shared
Kloukinas, Panos
1 / 1 shared
Horseman, Tony
1 / 1 shared
Voyagaki, Elia
1 / 1 shared
Oddbjornsson, Olafur
1 / 1 shared
Dihoru, Luiza
1 / 2 shared
Steer, Alan
1 / 1 shared
Kashani, Mehdi
1 / 3 shared
Kashani, Mehdi M.
4 / 6 shared
Eberhard, Marc O.
1 / 1 shared
Kashani, Mohammad M.
2 / 3 shared
Chart of publication period
2018
2016
2015
2014
2013
2012

Co-Authors (by relevance)

  • Ojaghi, Mobin
  • Martínez, Ignacio Lamata
  • Taylor, Colin
  • Blakeborough, Anthony
  • Williams, Martin
  • Haigh, Stuart K.
  • Madabhushi, Gopal S. P.
  • Dietz, Matthew
  • Alexander, Nicholas A.
  • Kashani, Mohammad
  • Lowes, Laura N.
  • Kashani, Mohammad Mehdi
  • Kloukinas, Panos
  • Horseman, Tony
  • Voyagaki, Elia
  • Oddbjornsson, Olafur
  • Dihoru, Luiza
  • Steer, Alan
  • Kashani, Mehdi
  • Kashani, Mehdi M.
  • Eberhard, Marc O.
  • Kashani, Mohammad M.
OrganizationsLocationPeople

document

Seismic Performance Evaluation of RC Bridge Piers Subject to Combined Earthquake Loading and Material Deterioration in Aggressive Environment

  • Alexander, Nicholas A.
  • Kashani, Mehdi M.
  • Crewe, Adam J.
Abstract

The aim of this research is to investigate the effect of different degrees of corrosion on the ultimate strength, ductility and failure mode of Reinforced Concrete (RC) bridge piers subject to earthquake loading using experimental and analytical studies on medium scale bridge piers at the Earthquake Engineering Research Centre (EERC) of the University of Bristol. The experimental studies in this project have three stages: a) testing of corroded reinforcement to investigate the effect of corrosion on the nonlinear stress-strain behaviour of reinforcing bars under monotonic and cyclic loading, b) monotonic compression tests on corrosion damaged well-confined RC short columns to investigate the effect of corrosion on confined concrete behaviour and the overall stability of corroded bars under high compression loads in the column and c) reaction wall tests on scaled bridge piers to investigate the response of corrosion damaged bridge piers subject to cyclic loading. Based on the experimental tests at stages (a) and (b) new constitutive material models are being developed to take into account the effect of long-term material deterioration. Finally these material models will be incorporated in the numerical simulation of experimental tests at stage (c) by developing a multi-mechanical nonlinear finite element code using fibre-section discretization technique. A selection of the experimental results of the monotonic tests on the corroded reinforcing bars in tension and compression (including buckling) and its effect on inelastic section response (moment-curvature) of corrosion damaged RC bridge piers are reported in this paper.

Topics
  • impedance spectroscopy
  • corrosion
  • simulation
  • strength
  • stress-strain behavior
  • compression test
  • ductility