People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ivanov, Dmitry S.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Novel cellular coil design for improved temperature uniformity in inductive heating of carbon fibre compositescitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Manufacturing Multi-Matrix Composites
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2019Matrix-graded and fibre-steered composites to tackle stress concentrationscitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2017Positioning and aligning CNTs by external magnetic field to assist localised epoxy curecitations
- 2017Ductility potential of brittle epoxies:Thermomechanical behaviour of plastically-deformed fully-cured composite resinscitations
- 2017Ductility potential of brittle epoxiescitations
- 2017Piezoelectric effects in boron nitride nanotubes predicted by the atomistic finite element method and molecular mechanicscitations
- 2016Smoothing artificial stress concentrations in voxel-based models of textile compositescitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellationcitations
- 2016Understanding and prediction of fibre waviness defect generation
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015Internal geometric modelling of 3D woven compositescitations
- 2015The compaction behaviour of un-cured prepregs
- 2014Mechanical modelling of 3D woven composites considering realistic unit cell geometrycitations
- 2013NOVEL FLEXIBLE TOOLING TO ENHANCE LIQUID RESIN INFUSION MANUF-ACTURE FOR NET-SHAPED PREFORMS
Places of action
Organizations | Location | People |
---|
document
NOVEL FLEXIBLE TOOLING TO ENHANCE LIQUID RESIN INFUSION MANUF-ACTURE FOR NET-SHAPED PREFORMS
Abstract
Interest in complex textile composite materials is driven by the cost of manufacturing as Liquid Resin Infusion (LRI) processes have the potential to be significantly cheaper than conventional processes. Yet the complexity of 3D braided preforms demands novel manufacturing approaches, and this is currently achieved using inflexible and specialised processes that are capital intensive. For instance, each preform requires its own tool that is incompatible with other preforms as they may exhibit different deformation characteristics. To date such limits have acted as inhibitors to wider industrial uptake of the techniques. To reduce the cost burden and improve flexibility constraints flexible tooling for LRI has long been desired. But a fundamental problem in this approach is the dimensional stability of the complex preforms and components that can lead to defective features such as inhomogeneous thickness distribution in convex corners, and resin rich zones formed in under-consolidated areas. The primary reason for these features is insufficient tooling constraints and this paper suggests an intermediate rigid/flexible solution, which does not require a complete redesign of costly tooling when changing preforms. The novel tooling solution is realised by the conversion of an existing prepreg-based toolset into a fully capable mould with flexible inserts, and complex 3D braided net-shaped architectures with various constraints are tested. Infusion trials incorporate the novel flexible tooling processes as well as some infused material quality analysis that includes measurements of the macro dimensions and a wide range of internal features such as pores, fibre volume fraction distribution, and internal geometry. Results show promise and further work is identified.