People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thydén, Karl Tor Sune
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2018Deposition of highly oriented (K,Na)NbO3 films on flexible metal substratescitations
- 2016Effects of strong cathodic polarization of the Ni-YSZ interfacecitations
- 2016Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cellscitations
- 2016Conductivity and structure of sub-micrometric SrTiO 3 -YSZ compositescitations
- 2016Conductivity and structure of sub-micrometric SrTiO3-YSZ compositescitations
- 2015Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin filmscitations
- 2015Fast mass interdiffusion in ceria/alumina compositecitations
- 2015Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDCcitations
- 2014In situ surface reduction of a NiO-YSZ-alumina composite using scanning probe microscopycitations
- 2013Oxidation in ceria infiltrated metal supported SOFCs – A TEM investigationcitations
- 2013Oxidation in ceria infiltrated metal supported SOFCs – A TEM investigationcitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Infiltrated SrTiO3:FeCr‐based Anodes for Metal‐Supported SOFCcitations
- 2013Infiltrated SrTiO 3 :FeCr‐based Anodes for Metal‐Supported SOFCcitations
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Characterization of impregnated GDC nano structures and their functionality in LSM based cathodescitations
- 2011Modifications of interface chemistry of LSM–YSZ composite by ceria nanoparticlescitations
- 2008Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells
- 2006Degradation of conductivity and microstructure under thermal and current load in Ni-YSZ cermets for SOFC anodescitations
Places of action
Organizations | Location | People |
---|
report
Durable and Robust Solid Oxide Fuel Cells
Abstract
The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind.Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C. The fact that degradation and robustness is not very well explored or understood at operating temperatures below 750 °C, provides motivation for focussing on materials and cells suitable for, and operated in this temperature range.<br/>A significant part of this project was concerned with improved understanding of degradation and failure mechanisms. Improved understanding of performance and lifetime limiting factors will make it possible to develop strategies for counteracting degradation and improving the power density of SOFC based systems, both necessary to advance towards the goals set out in the national plan for SOFC implementation.