Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mollicone, P.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Computational methods for the prediction of out-of-plane deformation in thin plate welded structurescitations

Places of action

Chart of shared publication
Gray, T. G. F.
1 / 4 shared
Camilleri, D.
1 / 4 shared
Comlekci, Tugrul
1 / 8 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Gray, T. G. F.
  • Camilleri, D.
  • Comlekci, Tugrul
OrganizationsLocationPeople

booksection

Computational methods for the prediction of out-of-plane deformation in thin plate welded structures

  • Gray, T. G. F.
  • Camilleri, D.
  • Mollicone, P.
  • Comlekci, Tugrul
Abstract

Welded structures are subjected to highly localized heat distributions at the fused region.This gives rise to non-uniform heating / expansion and cooling / contraction of the weld and surrounding base material, which consequently give rise to welding residual stresses and deformation. Means of mitigation welding distortions are possible, however a better strategy to control distortion would be to predict the final deformation for different welding configurations and then select the best procedure to achieve the required tolerance in distortion.Various computational strategies are possible ranging from complex multi-physics analyses to simple analytical models [1]. The approach adopted in this study, uncouples the thermal, elasto-plastic and structural effects leading to distortion. The most simplistic and computationally efficient model (CEM) makes use of simple algorithms, named 'Mismatched Thermal Strain' (MTS) and 'Contraction Thermal Strain' (TCS) that link the thermal welding strains to the elasto-plastic and structural response of the welded assembly, via a single static load step analysis. A more computational intensive models(CIM) that simulates the full transient thermal and elastoplastic structural response in an uncoupled fashion, is also presented.The computational models and results generated in this study have been supported at all stages by welding tests of a realistic nature. The thermal and distortion transients together with the final out-of-plane deformation were recorded during and after welding. In this paper a general review of the computational strategy and some experimental test results are discussed in context of butt and fillet welding of 0.5m square plates and of more realistic dimensions at 4m x 1.5m plates.<br/>

Topics
  • impedance spectroscopy
  • polymer