People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mikkonen, Kirsi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Protective role of wood hemicelluloses: Enhancing yeast probiotics survival in spray drying and storagecitations
- 2022Emulsion characterization via microfluidic devicescitations
- 2021Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Ligninscitations
- 2020Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocompositescitations
- 2019The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acidscitations
- 2019Emulsifier composition of solid lipid nanoparticles (SLN) affects mechanical and barrier properties of SLN-protein composite filmscitations
- 2018Physicochemical and rheo-mechanical properties of titanium dioxide reinforced sage seed gum nanohybrid hydrogelcitations
- 2018Novel nanobiocomposite hydrogels based on sage seed gum-Laponite: Physico-chemical and rheological characterizationcitations
- 2017Synchrotron microtomography reveals the fine three-dimensional porosity of composite polysaccharide aerogelscitations
- 2017Spruce gum – a new natural Nordic stabilizer
- 2016Softwood-based sponge gelscitations
- 2010Comparison of microencapsulation properties of spruce galactoglucomannans and arabic gum using a model hydrophobic core compoundcitations
- 2008Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
Places of action
Organizations | Location | People |
---|
article
Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
Abstract
The improvement of mechanical properties of spruce galactoglucomannan (GGM)-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and konjac glucomannan (KGM). The blend ratios were 3: 1, 1: 1, and 1: 3 (w/w), and in addition films were made from each of the polymers alone. Glycerol was used as plasticizer. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amount of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation when examined by microscopy.