People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Willför, Stefan
Åbo Akademi University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2022Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticlescitations
- 2022Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticlescitations
- 2022The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acids
- 2022Digital light processing (DLP) 3D-fabricated antimicrobial hydrogel with a sustainable resin of methacrylated woody polysaccharides and hybrid silver-lignin nanospherescitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose SurfaceviaOne-Pot Water-Phase Synthesiscitations
- 2021Bio-Based Hydrogels With Ion Exchange Properties Applied to Remove Cu(II), Cr(VI), and As(V) Ions From Watercitations
- 2021Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulosecitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose Surface via One-Pot Water-Phase Synthesiscitations
- 2021Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulose:An experimental and theoretical studycitations
- 2020Tailored thermosetting wood adhesive based on well-defined hardwood lignin fractionscitations
- 2020The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acidscitations
- 2020Larch wood residues valorization through extraction and utilization of high value-added productscitations
- 2019The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acidscitations
- 2018Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printingcitations
- 2017Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystalscitations
- 2016Softwood-based sponge gelscitations
- 2016Development of nanocellulose scaffolds with tunable structures to support 3D cell culturecitations
- 2015Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulosecitations
- 2015Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packagingcitations
- 2014Impact of torrefaction on the chemical structure of birch woodcitations
- 2011Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systemscitations
- 2010Comparison of microencapsulation properties of spruce galactoglucomannans and arabic gum using a model hydrophobic core compoundcitations
- 2008Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
- 2008Kinetics of acid hydrolysis of water-soluble spruce O-acetyl galactoglucomannanscitations
Places of action
Organizations | Location | People |
---|
article
Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
Abstract
The improvement of mechanical properties of spruce galactoglucomannan (GGM)-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and konjac glucomannan (KGM). The blend ratios were 3: 1, 1: 1, and 1: 3 (w/w), and in addition films were made from each of the polymers alone. Glycerol was used as plasticizer. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amount of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation when examined by microscopy.