Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lustrino, M.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015In Situ Determination of Viscosity and Structure of Carbonatitic to Carbonate-Silicate Melts as Function of Pressure and Temperaturecitations

Places of action

Chart of shared publication
Kono, Y.
1 / 4 shared
Irifune, T.
1 / 13 shared
Stagno, Vincenzo
1 / 6 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kono, Y.
  • Irifune, T.
  • Stagno, Vincenzo
OrganizationsLocationPeople

article

In Situ Determination of Viscosity and Structure of Carbonatitic to Carbonate-Silicate Melts as Function of Pressure and Temperature

  • Lustrino, M.
  • Kono, Y.
  • Irifune, T.
  • Stagno, Vincenzo
Abstract

Carbonatitic and carbonate-silicate magmas are representative of mantle-derived liquids that form by partial melting of carbonated peridotite and eclogite rocks at depths greater than 60 km in the Earth's interior. Carbonatitic melts are expected to contain 1-5 wt% SiO2, but at shallower conditions (about 100 km in depth), as a result of large melt fraction during decompression, SiO2 content increases up to 10-20 wt%. This variation in composition is expected to cause significant changes in the physical properties (e.g. viscosity and melt structure) of these magmas. The aim of this study was to determine the viscosity and structure of CO2-rich melts with variable SiO2 content representative of carbonatitic to carbonate-silicate natural melts. A mixture of CaCO3, MgCO3, SiO2, FeO, and NaCl was used as starting material. Synthetic glasses with 5 wt% and 18wt% SiO2 were quenched at high pressure using multi anvil presses. Viscosity measurements on CO2-bearing liquids were conducted with the falling-sphere method using the Paris-Edinburg type large volume apparatus at pressures between 1.5-6 GPa and temperatures of 1100-1500 °C. Determinations of viscosity of these liquids were determined from radiographic images recorded with a high-speed camera installed at Sector 16-BM-B (APS, Argonne). Falling velocity of the platinum probing spheres was measured by ultrafast X-ray radiography using a high-speed camera with a 500 fps recording rate (exposure time of 2 ms). The viscosity was, then, calculated from the Stokes equation including the correction factors for the effect of the wall and the end effect (Kono et al. 2014). Structural measurements of the liquid at high temperature were also performed using multi-angle energy dispersive X-ray diffraction technique. Preliminary results from this study will contribute to understand the variation of viscosity as function of pressure, temperature and degree of polymerization of CO2- melts during up welling within the asthenospheric mantle.

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • melt
  • Platinum
  • glass
  • glass
  • viscosity
  • mass spectrometry
  • appearance potential spectroscopy