Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Crispin, K. L.

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Growth Kinetics of a Reaction Rim Between Iron and Graphite/Diamond and the Carbon Diffusion Mechanism at High Pressure and Temperaturecitations
  • 2012Carbon diffusion in solid iron as function of pressure and temperaturecitations

Places of action

Chart of shared publication
Fei, Y.
2 / 5 shared
Stagno, Vincenzo
2 / 6 shared
Shahar, A.
1 / 2 shared
Chart of publication period
2014
2012

Co-Authors (by relevance)

  • Fei, Y.
  • Stagno, Vincenzo
  • Shahar, A.
OrganizationsLocationPeople

article

Carbon diffusion in solid iron as function of pressure and temperature

  • Fei, Y.
  • Stagno, Vincenzo
  • Crispin, K. L.
Abstract

The knowledge of carbon diffusion in metallic iron is of importance for both industrial and geological applications. In industry the diffusion properties of carbon apply to the massive production of steel through carburizing and galvanization processes at high temperature with the aim to improve the hardness and rust resistance of such materials. In geoscience the diffusion of carbon in metallic phases at high pressure and temperature is important for determining the rate of reactions and crystal growth of carbide phases likely coexisting with mantle silicates. Due to a small atomic radius, carbon is expected to dissolve by interstitial diffusion in solid metals. However, to date there are no experimental data available to understand the role that pressure plays on the mobilization of carbon through solid iron. Further, for light elements such as carbon or sulfur the activation energy is assumed to be lower than in case of lattice diffusion. However, with increasing pressure the activation volume must be taken into account to better understand diffusion processes at the atomic scale. We performed experiments using multianvil and piston cylinder devices at pressures between 1.5 and 6 GPa and temperature of 700-1200°C. Experiments were carried out using cylindrical glassy carbon sandwiched between layers of pure iron rods of known thickness enclosed in MgO capsule. Analytical techniques included FE-SEM for textural observation and accurate analyses of the interface between layers, while concentration profiles were measured using the electron microprobe with an optimized standardization procedure. Concentration profiles of carbon in iron were computed to determine the diffusion coefficients based on Fick's second law formulation assuming isotropic one dimension diffusion. Preliminary results confirm the positive temperature dependence of the diffusion coefficient for carbon widely discussed in literature. However, our results also show that a significant increase in pressure is required to affect the mobility of carbon through metallic iron by almost the same order of magnitude as cooling. The variation of the diffusion coefficient as function of temperature and pressure will be used to determine the activation energy and volume. It is known that the stability of carbide phases in the Earth's interior is mainly governed by the local Fe/C ratios. In the case of enriched mantle model, for instance, carbon in form of diamond will coexist with Fe7C3 for small amounts of metallic iron. In contrast, this would imply that at low carbon contents (〈50 ppm) typical of a depleted mantle source, and at oxygen fugacity conditions lower than EMOD buffer, the transport of carbon will likely occur by diffusion through the coexisting metal phase. Results from this study will improve our understanding on the transport of carbon by diffusion at conditions of the Earth's interior and will provide new thermodynamic data to explain the fractionation of carbon by diffusion in other planetary bodies.

Topics
  • impedance spectroscopy
  • Carbon
  • phase
  • mobility
  • experiment
  • Oxygen
  • carbide
  • steel
  • hardness
  • iron
  • activation
  • isotropic
  • interstitial
  • carbon content
  • fractionation
  • field-emission scanning electron microscopy