People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stagno, Vincenzo
Sapienza University of Rome
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021High pressure experimental investigation of clinopyroxene dissolution in a K-basaltic meltcitations
- 2015In Situ Determination of Viscosity and Structure of Carbonatitic to Carbonate-Silicate Melts as Function of Pressure and Temperature
- 2014Growth Kinetics of a Reaction Rim Between Iron and Graphite/Diamond and the Carbon Diffusion Mechanism at High Pressure and Temperature
- 2013Back-Transformation kinetics in the MgSiO3 system at upper mantle conditions
- 2013In situ X-ray observations of the melting relations in the Fe-S-H system under high pressure and high temperature
- 2012Carbon diffusion in solid iron as function of pressure and temperature
Places of action
Organizations | Location | People |
---|
article
Carbon diffusion in solid iron as function of pressure and temperature
Abstract
The knowledge of carbon diffusion in metallic iron is of importance for both industrial and geological applications. In industry the diffusion properties of carbon apply to the massive production of steel through carburizing and galvanization processes at high temperature with the aim to improve the hardness and rust resistance of such materials. In geoscience the diffusion of carbon in metallic phases at high pressure and temperature is important for determining the rate of reactions and crystal growth of carbide phases likely coexisting with mantle silicates. Due to a small atomic radius, carbon is expected to dissolve by interstitial diffusion in solid metals. However, to date there are no experimental data available to understand the role that pressure plays on the mobilization of carbon through solid iron. Further, for light elements such as carbon or sulfur the activation energy is assumed to be lower than in case of lattice diffusion. However, with increasing pressure the activation volume must be taken into account to better understand diffusion processes at the atomic scale. We performed experiments using multianvil and piston cylinder devices at pressures between 1.5 and 6 GPa and temperature of 700-1200°C. Experiments were carried out using cylindrical glassy carbon sandwiched between layers of pure iron rods of known thickness enclosed in MgO capsule. Analytical techniques included FE-SEM for textural observation and accurate analyses of the interface between layers, while concentration profiles were measured using the electron microprobe with an optimized standardization procedure. Concentration profiles of carbon in iron were computed to determine the diffusion coefficients based on Fick's second law formulation assuming isotropic one dimension diffusion. Preliminary results confirm the positive temperature dependence of the diffusion coefficient for carbon widely discussed in literature. However, our results also show that a significant increase in pressure is required to affect the mobility of carbon through metallic iron by almost the same order of magnitude as cooling. The variation of the diffusion coefficient as function of temperature and pressure will be used to determine the activation energy and volume. It is known that the stability of carbide phases in the Earth's interior is mainly governed by the local Fe/C ratios. In the case of enriched mantle model, for instance, carbon in form of diamond will coexist with Fe7C3 for small amounts of metallic iron. In contrast, this would imply that at low carbon contents (〈50 ppm) typical of a depleted mantle source, and at oxygen fugacity conditions lower than EMOD buffer, the transport of carbon will likely occur by diffusion through the coexisting metal phase. Results from this study will improve our understanding on the transport of carbon by diffusion at conditions of the Earth's interior and will provide new thermodynamic data to explain the fractionation of carbon by diffusion in other planetary bodies.