Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghoneim, Mohamed

  • Google
  • 3
  • 7
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Solid-state Memory on Flexible Silicon for Future Electronic Applicationscitations
  • 2015Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon18citations
  • 2014Transformational silicon electronics85citations

Places of action

Chart of shared publication
Rojas, Jhonathan
2 / 3 shared
Hussain, Muhammad
2 / 5 shared
Bersuker, Gennadi
1 / 1 shared
Young, Chadwin D.
1 / 1 shared
Torres Sevilla, Galo
1 / 2 shared
Inayat, Salman Bin
1 / 1 shared
Ahmed, Sally
1 / 1 shared
Chart of publication period
2016
2015
2014

Co-Authors (by relevance)

  • Rojas, Jhonathan
  • Hussain, Muhammad
  • Bersuker, Gennadi
  • Young, Chadwin D.
  • Torres Sevilla, Galo
  • Inayat, Salman Bin
  • Ahmed, Sally
OrganizationsLocationPeople

thesis

Solid-state Memory on Flexible Silicon for Future Electronic Applications

  • Ghoneim, Mohamed
Abstract

Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding the reliability and functionality anomalies in flexible electronics and flexible solid state memory built using the flexible silicon platform. The results of the presented studies show that: (i) flexible devices fabricated using etch-protect-release approach (with trenches included in the active area) exhibit ~19% lower safe operating voltage compared to their bulk counterparts, (ii) they can withstand prolonged bending duration (static stress) but are prone to failure under dynamic stress as in repeated bending and re-flattening, (iii) flexible 3D FinFETs exhibit ~10% variation in key properties when exposed to out-of-plane bending stress and out-of-plane stress does not resemble the well-studied in-plane stress used in strain engineering, (iv) resistive memories can be achieved on flexible silicon and their basic resistive property is preserved but other memory functionalities (retention, endurance, speed, memory window) requires further investigations, (v) flexible silicon based PZT ferroelectric capacitors exhibit record polarization, capacitance, and endurance (1 billion write-erase cycles) values for flexible FeRAMs, uncompromised retention ability under varying dynamic stress, and a minimum bending radius of 5 mm, and (vi) the combined effect of 225 °C, 260 MPa tensile stress, 55% humidity under ambient conditions (21% oxygen), led to 48% reduction in switching coercive fields, 45% reduction in remnant polarization, an expected increase of 22% in relative permittivity and normalized capacitance, and reduced memory window (20% difference between switching and non-switching currents at 225 °C).

Topics
  • impedance spectroscopy
  • Oxygen
  • dielectric constant
  • semiconductor
  • Silicon