People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Partridge, Ivana K.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Effects of accelerated curing in thermoplastic particle interleaf epoxy laminatescitations
- 2019Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loadingcitations
- 2019Effective use of metallic Z-pins for composites' through-thickness reinforcementcitations
- 2018COUPON SCALE MODELLING OF THE BRIDGING MECHANICS OF HIGH-RATE LOADED Z-PINS
- 2018Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2018Evaluating Z-pin performance under high-velocity impact conditions
- 2017Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2016Understanding and prediction of fibre waviness defect generation
- 2016Use of microfasteners to produce damage tolerant composite structurescitations
- 2016On the delamination self-sensing function of Z-pinned composite laminatescitations
- 2016Developing cure kinetics models for interleaf particle toughened epoxies
- 2015Delamination resistance of composites using inclined Z-pins
- 2012Finite element modelling of z-pinned composite T-jointscitations
- 2012Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine systemcitations
- 2012RTM processing and electrical performance of carbon nanotube modified epoxy/fibre compositescitations
- 2012RTM processing and electrical performance of carbon nanotube modified epoxy/fibre compositescitations
- 2010Percolation threshold of carbon nanotubes filled unsaturated polyesterscitations
- 2010Toward a constitutive model for cure-dependent modulus of a high temperature epoxy during the curecitations
- 2009Monitoring Cure in Epoxies Containing Carbon Nanotubes with an Optical-Fiber Fresnel Refractometercitations
- 2009Dielectric monitoring of carbon nanotube network formation in curing thermosetting nanocompositescitations
- 2009Monitoring dispersion of carbon nanotubes in a thermosetting polyester resincitations
- 2008Thermomechanical analysis of a toughened thermosetting system
- 2008Thermomechanical analysis of a toughened thermosetting system.citations
- 2007Exploring mechanical property balance in tufted carbon fabric/epoxy composites.citations
- 2004Inverse heat transfer for optimization and on-line thermal properties estimation in composites curing.citations
Places of action
Organizations | Location | People |
---|
article
Thermomechanical analysis of a toughened thermosetting system
Abstract
The experimental results of viscoelastic mechanical tests, at five different levels of conversion, are reported for a thermoset composite matrix system toughened with an appropriate percentage of a thermoplastic polymer. The results from static tests are used to construct the master curves at a specific degree of cure, while the shift factors are compared with the corresponding values from dynamic experiments in order to assess the validity of the time-temperature superposition for each conversion. Neat resin plates were cured accurately, according to the full kinetics model for a dynamic and isothermal temperature regime; the conversion gradient in the plane and across the thickness of the plates was assessed by a thermal analysis of samples taken from different locations before extracting the samples from them. The viscoelastic behaviour of the resin matrix showed a sensible difference in the relaxation time spectrum upon conversion according to the provisional trend of mobility theory; a higher conversion induced a horizontal shift of the principal relaxation time for each level of conversion, which could be related very well to the glass transition at the same conversion. Good results were also obtained for the ultimate modulus of the resin at a temperature just before the onset of the co-curing phase for partially cured samples.